English

43 seconds! Completion of laser welding of a new energy vehicle body

1233
2025-03-11 16:13:26
See translation

March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of high-end laser equipment to catch up.


“20 years ago, China's high-end laser processing equipment basically rely on foreign imports, even the screws used for laser reinforcement, have to spend $ 3 a to buy from abroad. It is because of this screw woke me up, must take the road of self-improvement struggle.” Ma Xinqiang said.

Ma Xinqiang introduced, HGTECH in the development of successful automotive body-in-white laser welding equipment, a breakthrough in foreign technology monopoly for nearly 40 years, forcing the price of foreign products fell by more than 40%. “Now we use 43 seconds, we can complete a new energy vehicle body laser welding, which is the fastest speed in the industry, at present we have more than 90% of the domestic market share of this product, service more than 45 million vehicles off the line.” At the same time, HGTECH has also developed more than 100 sets of laser equipment to serve the automotive industry chain of auto parts production of thousands of kinds, which strongly support China's new energy vehicles to the world.

Related Recommendations
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    See translation
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    See translation
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Tescan expands semiconductor workflow using femtosecond laser technology

    Tescan releases its next-generation femtosecond laser platform, FemtoChisel, expanding its semiconductor product portfolio. This platform is committed to improving the speed, accuracy, and quality of sample preparation, and will officially debut at the ISTFA exhibition in 2025. FemtoChisel was developed specifically for semiconductor research and failure analysis environments where both throughp...

    11-20
    See translation