English

43 seconds! Completion of laser welding of a new energy vehicle body

1031
2025-03-11 16:13:26
See translation

March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of high-end laser equipment to catch up.


“20 years ago, China's high-end laser processing equipment basically rely on foreign imports, even the screws used for laser reinforcement, have to spend $ 3 a to buy from abroad. It is because of this screw woke me up, must take the road of self-improvement struggle.” Ma Xinqiang said.

Ma Xinqiang introduced, HGTECH in the development of successful automotive body-in-white laser welding equipment, a breakthrough in foreign technology monopoly for nearly 40 years, forcing the price of foreign products fell by more than 40%. “Now we use 43 seconds, we can complete a new energy vehicle body laser welding, which is the fastest speed in the industry, at present we have more than 90% of the domestic market share of this product, service more than 45 million vehicles off the line.” At the same time, HGTECH has also developed more than 100 sets of laser equipment to serve the automotive industry chain of auto parts production of thousands of kinds, which strongly support China's new energy vehicles to the world.

Related Recommendations
  • Cobot Systems announces the establishment of a partnership between UR+and its laser welding collaborative robot system

    Cobot Systems announced that it has now become a UR+partner and showcased laser welding unit systems. This honor marks an important milestone in the company's journey of providing widely available automated labor solutions. This approval highlights Cobot Systems' commitment to providing innovative solutions compatible with UoRobot (UR) products, ensuring seamless collaboration with integrated lase...

    2024-05-16
    See translation
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    See translation
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    See translation
  • New LiDAR can 'see' faces from hundreds of meters away

    At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and c...

    02-11
    See translation
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    See translation