English

Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

514
2024-05-10 15:55:13
See translation

JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant leap in past achievements in computer simulation or photons.



Applying optical tweezers to large-scale Hubbard systems
Researchers used cutting-edge technology, including optical tweezers and advanced cooling methods, to prepare specific patterns of up to 180 strontium atoms in a lattice of 1000 points. By minimizing the motion of atoms and ensuring they remain in the lowest energy state, the team reduced noise and decoherence, which are common challenges in quantum experiments.

Kaufman said, "Optical tweezers have achieved groundbreaking experiments in multibody physics, typically used to study interacting atoms, where atoms are fixed in space and interact over long distances." "However, when particles can both interact and tunnel, and quantum mechanics spreads in space, a fundamental class of multibody problems arises - the so-called 'Hubbard' system. In the early stages of establishing this experiment, our goal was to apply this tweezer paradigm to large-scale Hubbard systems - this article marks the first realization of this vision."

Confirm high fidelity through scaling testing
Due to the complexity of boson sampling, it is not feasible to directly verify the correct sampling task of 180 atomic experiments. To overcome this issue, researchers sampled atoms of different scales and compared the measurement results with simulations of reasonable error models involving intermediate scale experiments.

"We tested with two atoms and we have a good understanding of what is happening. Then, at an intermediate scale where we can still simulate things, we can compare our measurement results with simulations involving reasonable error models in our experiments. On a large scale, we can continuously change the difficulty of the sampling task by controlling the distinguishability of atoms and confirm that there are no major issues," said Aaron Young, the first author and former JILA graduate student.

This work demonstrates the high-quality and programmable preparation, evolution, and detection of atoms in the lattice, which can be applied to atomic interactions, opening up new methods for simulating and studying the behavior of real and poorly known quantum materials.

Source: Laser Net

Related Recommendations
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    See translation
  • Researchers develop innovative quantum dot lasers for advanced frequency combs

    Researchers at the University of California, Santa Barbara have made significant breakthroughs in laser technology, introducing a groundbreaking quantum dot mode-locked laser that allows for independent generation of amplitude and frequency modulation combs from a single device. This cutting-edge dual mode laser paves the way for the creation of small-sized and energy-efficient frequency combs for...

    2023-11-17
    See translation
  • Rachel's latest laser welding and cutting machine processes thicker materials at lightning speed

    Rachel is a pioneer in laser technology solutions and is pleased to announce a significant update to its laser welding and cutting machines. These enhanced features aim to provide customers with faster turnaround time and higher accuracy, reaffirming Rachel Corporation's commitment to providing cutting-edge laser cutting and welding solutions to meet the needs of different industries.Lache Company...

    2024-04-07
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in evaluating the anti laser damage performance of thin film optical components using different laser damage testing protocols

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in evaluating the laser damage resistance and damage mechanism of 532nm thin film polarizers using different laser damage test protocols. The related achievements were published in Optical Materi...

    2024-04-25
    See translation
  • HENGTONG listed on the Fortune Global 500 list of brands

    Recently, the 2024 (21st) World Brand 500 ranking list exclusively compiled by World Brand Lab was released in New York, USA. HENGTONG brand participated in the selection for the first time, standing out from more than 8000 participating brands in 32 countries worldwide and ranking 395th on the "Top 500 World Brands" list. This year, there are a total of 21 new brands on the global list, of whic...

    2024-12-17
    See translation