English

The Welding Application of Fiber Laser in the Food and Beverage Industry

152
2023-10-19 12:00:28
See translation

As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exacerbates these challenges, putting additional pressure on manufacturers to maintain competitiveness.

To maintain a leading position in these challenges, manufacturers need flexible manufacturing technologies that are easy to use, fast, capable of eliminating waste and rework, and producing equipment with excellent craftsmanship. Laser welding provides excellent processes that enable smooth surface treatment, faster processes, and eliminate potential bacterial contamination traps, making it expected to play a crucial role in the food and beverage industry. Materials and Connection Technologies in the Food and Beverage Industry.

The materials used in equipment often affect manufacturing. Stainless steel, especially grades 304 and 316, is the preferred material for food grade applications due to its cleanliness, corrosion resistance, and ease of disinfection. This type of steel has a high level of durability and wear resistance, and its presence is often found in food preparation, processing, brewing and distillation, catering, and restaurants. Fasteners such as bolts and rivets need to consider the joint structure and direction related to the food contact area. And this may impose limitations on the design and increase the cost of component manufacturing.

Fortunately, handheld laser welding technology has achieved a higher level of design flexibility, reducing the number of parts by eliminating nuts, bolts, and washers, and simplifying machining components by eliminating threaded holes. Due to its ease of use, versatility, and technological capabilities, this technology provides many opportunities for improvement for food and beverage manufacturers in the food and beverage industry.

Handheld laser welding can enable equipment designers to operate not only on food contact surfaces, but also on all surfaces of the equipment (such as welding closed frame pipes), bringing good results to improve cleaning efficiency.

Compared with MIG and TIG welding, the heat input is significantly reduced, and designers have more manufacturing options when using thinner materials, such as reducing raw material costs and related transportation costs in non load-bearing structures.

Handheld laser system for distortionless welding of mixed materials
In addition, the efficiency of laser welding manufacturing can also be improved, thereby increasing profits. Traditional technologies such as MIG and TIG welding require muscle memory and motor skills. A skilled welder may take several years to develop the required level of professional knowledge to enable the manufacturer's products to stand out in competition by producing high-quality welding. Laser welding can enable a worker with only basic dexterity or no welding experience to learn how to produce high-quality and consistent welds in a short amount of time.

High quality welding and easier post-processing
In addition, post-processing of welds, such as grinding and medium blasting, increases costs through equipment and additional labor. The low-cost and easy-to-use welding solution available breaks down the barriers to obtaining professional and skilled labor. Laser welding is also faster than traditional methods, four times faster than TIG welding.

The challenge of using traditional welding methods to achieve high-quality surface treatment for food grade processes is very significant. Laser welding capability - such as swing welding, which can quickly scan the entire welding path of the laser beam, minimize splashing, and enable imperfect parts to be welded, reducing the need for manual post-processing and improving product quality.

In addition, using a laser can use a wire feeder to fill materials where necessary. When combined with swing welding, it is easy to create superior joints, and in many cases, post-processing grinding may not be necessary.

Another key issue is the possibility of microcracks, which may occur on thinner joints when using traditional welding. This can avoid the low heat input and stable welding pool swing ability due to laser welding.

Before welding, debris on the surface of the part may produce inclusions and other defects. Currently, many handheld laser systems also offer laser cleaning capabilities, which can remove pre and post weld smoke and dust, as well as remove discoloration in heat affected areas and allow surface passivation.

Compared to resistance spot welding, laser spot welding is non-contact and precise, completely eliminating tip pressure and alignment issues, resulting in higher quality products and preventing problems such as indentation and asymmetric welds, which can lead to bacterial growth and visually inferior products, respectively.

In addition, laser spot welding only requires contact with one side of the part, providing more design flexibility. Compared to TIG welding, thin parts can be spot welded at significantly higher rates with minimal heat input.

Meeting the hygiene and cleanliness requirements of the food and beverage industry is a complex task. Handheld laser welding and cleaning technologies (such as IPG's LightWeld system) have significant advantages in food grade welding, providing flexibility in equipment design, improving productivity, reducing costs, and improving quality. By adopting this technology, manufacturers can improve food safety, simplify production processes, and ensure customer satisfaction.

Compared to traditional welding methods, handheld laser welding and cleaning have many advantages, which can help improve welding quality and consistency, while reducing production time and costs.

Source: OFweek

Related Recommendations
  • US blue laser company Nuburu plans to raise nearly $65 million in funding

    Recently, Nuburu, a high-power industrial blue light laser company in the United States, announced that the company has agreed to a new financing arrangement worth up to $65 million.This agreement was reached between Nuburu and the Delaware hedge fund Liquous LP, which claims to provide a "customized liquidity solution". According to the terms of the agreement, Nuburu will first receive an initial...

    2024-10-11
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    See translation
  • Laser ablation helps to trace the origin of medieval metals

    Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores ...

    2024-04-13
    See translation
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    See translation
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    See translation