English

PsiQuantum completes $1 billion equity financing

6
2025-09-16 14:10:34
See translation

PsiQuantum, the Palo Alto startup at the forefront of photonics-based quantum computer development, says it will break ground on two manufacturing sites after closing a series E venture round that raised $1 billion.

The new funding, led by private equity giant Blackrock and featuring several others including Nvidia’s venture capital wing, will enable the firm to build quantum computing sites in Brisbane, Australia, and Chicago.

PsiQuantum says it will also support the deployment of large-scale prototype systems to validate systems architecture and integration, and further advance the performance of its quantum photonic chips and fault-tolerant designs.


Silicon and BTO wafer fabrication


The company believes that a combination of photonic qubits and high-volume semiconductor manufacturing is needed to overcome the scaling challenges of manufacturability, cooling, and networking that are faced when building a fault-tolerant quantum computer with a million qubits.

PsiQuantum’s CEO and co-founder Jeremy O’Brien added: “Only building the real thing - million-qubit scale, fault-tolerant machines - will unlock the promise of quantum computing.

“We defined what it takes from day one: this is a grand engineering challenge, not a science experiment. We tackled the hardest problems first - at the architectural and chip level - and are now mass-manufacturing best-in-class quantum photonic chips at a leading US semiconductor fab.

“With this funding, we’re ready to take the next decisive steps to deliver the full potential of quantum computing.”

Barium tantanate switch
The semiconductor fab in question belongs to GlobalFoundries, which partnered with PsiQuantum on the development of a “quantum photonic” chipset known as Omega.

Fabricated on full-size silicon wafers at the firm’s “Fab 8” silicon photonics facility in upstate New York, it features key components including high-performance single-photon sources, superconducting single-photon detectors, and a “next-generation” optical switch based on barium titanate (BTO).

BTO is seen as critical. As one the highest-performing electro-optic materials, it is well suited to ultra-high-performance optical switches, regarded as the missing component when it comes to scaling optical quantum computing.

PsiQuantum manufactures 300 mm-diameter wafers of BTO at its facility in California, before they are integrated with the silicon photonics wafers produced by GlobalFoundries.

The latest funding will also enable PsiQuantum to scale up BTO production towards the volumes needed for utility-scale quantum computing, says the startup, adding that its BTO-enabled optical switch may also find use in next-generation AI supercomputers - where low-power, high-speed optical networking is growing in importance.

Other key optical components in the Omega chipset are known to include waveguides, beamsplitters, bends, and chip-to-fiber input/output couplers.

Nvidia collaboration
Pete Shadbolt, who co-founded the company after completing a PhD under O’Brien’s supervision at the UK’s University of Bristol and is now PsiQuantum’s chief scientific officer, commented: “Nearly nine years after we started, we have pushed the technology to an unprecedented level of maturity and performance.

"We have the chips, we have the switches, we have a scalable cooling technology, we can do networking, we have found the sites, we have the commercial motive and the government support - we’re ready to get on and build utility-scale systems.”

Alongside the fundraising, PsiQuantum has also agreed a new collaboration with Nvidia covering a broad range of development areas, including quantum algorithms and software, GPU-QPU integration, and PsiQuantum’s silicon photonics platform.

Co-led by Temasek and Bailie Gifford, the latest round is said to value PsiQuantum at $7 billion, and attracted new investors in the form of Macquarie Capital, Ribbit Capital, Nvidia’s “NVentures” unit, Adage Capital Management, the Qatar Investment Authority (QIA), Type One Ventures, Counterpoint Global (Morgan Stanley), 1789 Capital, and S Ventures (SentinelOne).

It follows the firm’s $450 million series D effort announced in July 2021, which was also led by Blackrock, and featured both Baillie Gifford and Microsoft’s “M12” venture fund.

Source: optics.org

Related Recommendations
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    See translation
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    See translation
  • Atomstack leads the new track of intelligent laser engraving

    In today's rapidly developing technology, laser engraving technology is like a mysterious magician, constantly demonstrating amazing skills. In this field full of creativity and competition, Atomstack stands out with its outstanding technology and innovative spirit, becoming a leader in the new track.As the only enterprise in the semiconductor laser engraving machine industry with an annual shipme...

    2024-11-15
    See translation
  • Researchers use a new frequency comb to capture photon high-speed processes

    From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or ...

    2023-11-02
    See translation
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    See translation