English

HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

196
2025-03-07 16:26:05
See translation

New Product for Wafer Testing Probe Card Manufacturing Equipment Project

 


This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. After picking up the probe, posture correction technology is used to ensure that the probe is implanted into the fixture. Probe crystal disk size 8 ", thickness>20 μ m, cutting accuracy<10 μ m, heat affected zone<30 μ m, correction accuracy<2 μ m, implantation accuracy<10 μ m, welding accuracy XY<3 μ m, Z<8μm, Weld the maximum plate of 12 inches.

application area 
Electronic/Electrical/Semiconductor


New intelligent equipment for comprehensive printing and marking


The comprehensive printing and marking intelligent equipment is particularly suitable for the field of shipbuilding. Based on the assembly line method, it uses UV coding technology, combined with full format automatic 2D visual edge finding technology, under the control of MES system, and combined with dedicated control and programming conversion software, to achieve efficient printing of various display elements on steel plates in shipbuilding. The maximum printing width of the equipment is 5.5m, which can meet the printing needs of all steel plates in the shipbuilding process; The printing speed is fast, with a speed of up to 25m/min when used as an offline device. A steel plate with a size of 5.5 * 22m can complete all printing work in 53 seconds, which is more than 90% slower than traditional methods.

application area 
Tool manufacturing/engineering machinery

Related Recommendations
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    See translation
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    See translation
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    See translation
  • The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

    According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress. Image source: Nature websiteTitanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they ...

    2024-07-01
    See translation
  • Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

    Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicis...

    2024-06-04
    See translation