English

Focused Energy purchases two world-class high-energy lasers

992
2024-12-25 14:45:23
See translation

Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.

Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average power devices in the private sector, each capable of releasing over 1 kilojoule of energy towards targets, with a total investment of nearly $40 million.

The most advanced inertial restraint system currently available is located at the National Ignition Facility of the US government, which announced a breakthrough in "net gain" two years ago. There, physicists can conduct approximately 300 "shots" each year to study nuclear fusion. This is far below the demand of commercial nuclear fusion power plants. For example, the goal of 'concentrating energy' is to shoot 10 times per second.

The two new lasers from Focused Energy will be able to emit once per minute, although this is partly due to the active development of devices supporting them.

Doug Hammond, Vice President of the Laser Engineering Department of the company, further explained, "These subsystems are important demonstrations of the technology we need to build the final fusion pilot factory." He emphasized that the high-energy main amplifier is still under parallel development because such products do not yet exist in the market.

These lasers are not only a key part of the technology demonstration, but also fully customized and manufactured by Amplitude Lasers, a well-known ultrafast laser company in France. Each laser system covers an area of approximately 1600 square feet, equivalent to the size of a small residential building. Damien Buet, CEO of Amplitude Lasers, explained, "One of the reasons we haven't mass-produced such a large laser is that there isn't a significant demand in the market at the moment.

However, if Focused Energy can achieve its milestone goals, this situation may change. The commercial power plants designed by the company each require thousands of lasers. Buet pointed out, "The number of diodes required for a factory will far exceed the current global maximum production capacity. We need to expand the entire supply chain.

In order to ensure sufficient ignition energy and operational reliability of the power plant (even when some lasers require maintenance or replacement), the main challenge faced by Focused Energy is construction speed. Scott Mercer said, "Our target is 2035. The key is how quickly we can start mass producing lasers.

He added, "Even connecting a traditional power plant to the grid within 10 years is a highly challenging goal today
The kilojoule level laser of Amplitude Lasers is designed to test the physical properties required for effective direct drive compression of deuterium tritium fusion fuel targets. They will run at a high repetition rate of once every 60 seconds, enabling rapid design iterations.
This research was supported and funded by the German Federal Breakthrough Innovation Agency (SPRIND).

This three-year development plan will begin at the Amplitude Lasers Lisses facility near Paris in early 2025, building on the global momentum of inertial fusion energy triggered by the National Ignition Facility (NIF) fusion ignition breakthrough in December 2022. This initiative places the amplitude at the forefront of global development of clean energy solutions, utilizing cutting-edge laser technology to improve the parameters of inertial confinement fusion and advance the commitment to sustainable energy production.

We are seeking a nuclear fusion method called inertial confinement, in which several laser beams converge to compress fuel particles, causing their internal matter to fuse and release energy. This technology has demonstrated for the first time that net positive nuclear fusion power generation is possible, although there are still significant obstacles to overcome.

Source: OFweek

Related Recommendations
  • Breakthrough development of terahertz quantum cascade lasers

    With the development of groundbreaking components for terahertz quantum cascade lasers, a huge leap has been made in the field of laser technology. A group of researchers have successfully designed a broadband single-chip external coupler with the potential to redefine the functionality of terahertz QCL.The new external coupler is fundamentally based on planar bimetallic waveguides. Its design is ...

    2024-01-04
    See translation
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    See translation
  • TYVOK Releases K1: The Ultimate 100W CO₂ Laser Engraver for Makers and Designers

    TYVOK, industry leaders in laser engraving technology, just announced the launch of TYVOK K1, a modular CO₂ laser engraver engineered to give makers, designers, schools, and small businesses industrial power with intuitive design and user-friendly operation. TYVOK K1 blends a true 100W optical CO₂ laser engine with precision motion control, a rigid, level platform, and professional-grade safety sy...

    09-16
    See translation
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    See translation
  • What is field assisted additive manufacturing?

    Dr. Tan Chaolin from the Singapore Institute of Manufacturing Technology, in collaboration with China University of Petroleum, Shanghai Jiao Tong University, Princeton University, University of Malta, Huazhong University of Science and Technology (Professor Zhang Haiou), University of California, Irvine, Hunan University, and EPM Consulting, published an article titled "Review on Field Assisted Me...

    2024-07-29
    See translation