English

Relevant teams of the Chinese Academy of Sciences breakthrough the application difficulties of ultra compact gas laser system in special scenarios

468
2024-07-20 10:43:45
See translation

Recently, Liang Xu's team from the Laser Center of Anguang Institute, Chinese Academy of Sciences, Hefei Institute of Materia Medica, conducted research on corona discharge fluid control and its application in the gas laser system, proposed an electric field flow field coupling analysis model suitable for multi pin corona discharge scenarios, and revealed the flow velocity distribution characteristics and control laws of the multi pin current body pump. The designed current body pump can be used for non mechanical medium circulation drive of ultra compact and miniaturized gas laser systems, breaking through the application difficulties of ultra compact gas laser systems in special scenarios. The relevant research results were published in the top international journal Physics of Fluids in the field of fluid mechanics and were selected as Editor's Pick by the journal.

Traditional gas lasers use mechanical circulation devices to form high-speed medium circulation, which have the characteristics of large volume, strong vibration, and severe noise. They are not suitable for some special application scenarios and ultra compact gas laser system applications; Electrohydrodynamics (EHD) pumps generate "ion wind" through corona discharge, which has advantages such as lightweight, vibration free, and noise free. They can replace traditional mechanical circulation devices in miniaturized gas laser systems and expand gas laser applications.

Researchers conducted research on the flow distribution characteristics and flow rate control of multi needle corona discharge EHD pumps. 
Firstly, by establishing corresponding physical models and constructing a multi physics field coupling mechanism, a simplified nonlinear steady-state current body equation applicable to multi needle corona discharge systems is derived; Secondly, a high-precision and fast numerical calculation algorithm is designed for the nonlinear differential equation boundary value problem of flow velocity profile, to quantitatively calculate the controlled characteristics of steady-state flow velocity as a function of voltage and electrode spacing parameters.

The research results indicate that in the steady-state flow rate control of multi needle EHD pumps, voltage parameters are more dominant than electrode spacing, and the maximum and average flow rates of the system exhibit a superlinear evolution law with voltage control. In the design scheme of a multi needle EHD pump with an electrode spacing of 1 centimeter, providing a working voltage of 5000 volts can achieve a maximum gas flow rate of 0.82 meters per second, which can meet the requirements of medium circulation in small gas laser systems, meet the normal glow discharge of the main electrode, and expand the application of ultra compact gas laser systems in special scenarios.

Master's student Han Jinliang is the first author of the paper, and researcher Liang Xu is the corresponding author of the paper. This research was supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences, the research instrument and equipment development project of the Chinese Academy of Sciences, and the youth team project of Anguang Institute of Hefei Academy of Materials, Chinese Academy of Sciences.

Figure 1 Calculation framework for boundary value problem of flow velocity profile of multi needle EHD pump

Figure 2 Flow field distribution of multi needle EHD system: (a) When the anode voltage is 4000 volts; (b) When the anode voltage is 4500 volts; (c) When the anode voltage is 5000 volts

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Related Recommendations
  • Researchers use blurry light to 3D print high-quality optical components

    Canadian researchers have developed a new 3D printing method called Blur Tomography, which can quickly produce micro lenses with commercial grade optical quality. The new method can make designing and manufacturing various optical devices easier and faster.Daniel Webber from the National Research Council of Canada stated, "We have intentionally added optical blurring to the beams used in this 3D p...

    2024-05-11
    See translation
  • Samsung and SK Hynix Explore Laser Debonding Technology

    According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will als...

    2024-07-16
    See translation
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    See translation
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    See translation
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    See translation