English

The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

363
2023-08-24 11:46:55
See translation

Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals. 

In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However, integrated EOM, as an independent on-chip component, is usually separated from the light source.

Therefore, additional interfaces for coupling light from the light source to the waveguide of the on-chip device are essential. Although state-of-the-art coupling schemes, including edge coupling and grating coupling, have been adopted, they are still affected by limited integration density and narrowband operation, respectively.

In addition, both coupling schemes require ultra precise alignment and complex packaging, making on-chip devices expensive for customers. Therefore, there is a need for an EOM device that avoids coupling complexity and further reduces coupling losses.

In a new paper published in the journal Optics: Science and Applications, a group of scientists developed a method of directly integrating EOM devices onto the end face of single-mode fiber jumpers, using standard fiber interfaces to connect EOM devices to light sources.

Using the standard nanomachining method developed in our previous work, the EOM module can be directly integrated on the tip of a single-mode fiber, thus avoiding coupling processing in the essence of superfiber EOM, "said Professor Qiu Min.

This plasma superfiber EOM has a clear plasma organic mixing configuration. Benefiting from ultra-thin and high-quality plasma metasurfaces, nano processing friendly and efficient EO polymers, the spectral amplitude and quality factor of light are well controlled to improve the resonance sensitivity of EO modulation.

More interestingly, by properly designing plasma mode, resonant waveguide mode, and Fabry Perot mode, tunable dual band operation can be achieved in the telecommunications O and S bands, "added co lead authors Lei Zhang and Xinyu Sun.

The microfiber EOM is further driven by DC/AC signals. The modulation speed of the metafiber EOM can reach up to 1000 MHz, with a bias voltage of ± 9 V, which is the best performance of the lumped fiber integrated EOM.

This type of ultra fiber EOM provides a new perspective for designing ultra compact and high-performance EO devices, which are suitable for applications that require compact configurations, high integration capabilities, and low coupling losses, such as active mode-locked fiber lasers and tunable broadband fiber polarizers. This work also provides a way for the "plug and play" implementation of optoelectronic devices and ultra compact "all fiber" optical systems in communication, imaging, sensing, and other fields Professor Wang Jiyong added.

Source: Laser Network

Related Recommendations
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    See translation
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    See translation
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    See translation
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation
  • The Future of Data Center Communication: Quantum Dot Semiconductor Comb Laser

    In the constantly evolving field of technology and data communication, researchers have made significant breakthroughs: developing a continuous wave O-band quantum dot semiconductor comb laser for wavelength division multiplexing optical interconnection. With its impressive performance characteristics, this development is expected to completely change the way we manage and transmit data, especiall...

    2024-02-21
    See translation