English

New photonic nanocavities open up new fields of optical confinement

651
2024-02-12 20:36:06
See translation

In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.

For a long time, physicists have been searching for ways to force photons into increasingly smaller volumes. The natural length scale of photons is wavelength, and when photons are forced into cavities much smaller than the wavelength, they actually become more "concentrated". This concentration enhances the interaction with electrons and amplifies the quantum process inside the cavity. However, despite significant success in limiting light to deep sub wavelength volumes, dissipation effects remain a major obstacle. The photons in the nanocavity are absorbed very quickly, much faster than the wavelength, which limits the applicability of the nanocavity in some of the most exciting quantum applications.

The research team led by Professor Frank Koppens from ICFO in Barcelona, Spain, has addressed this challenge by creating nanocavities with unparalleled sub wavelength volume and extended lifetime combinations. These nanocavities, with dimensions smaller than 100x100nm2 in area, are only 3nm thin, limiting the duration of light much longer. The key lies in the use of hyperbolic phonon polaritons, which are unique electromagnetic excitations that occur in two-dimensional materials that form cavities.

Unlike previous studies on cavities based on phonon polaritons, this work utilizes a new indirect constraint mechanism. The nanocavity is made by drilling nanoscale holes on a gold substrate, and has the extremely high accuracy of a helium focused ion beam microscope. After drilling, hexagonal boron nitride is transferred to its top. HBN supports electromagnetic excitation called hyperbolic photon polaritons, which are similar to ordinary light but can be confined to very small volumes. When polaritons pass above the metal edge, they are strongly reflected by the metal, which limits them. Therefore, this method avoids directly shaping hBN while maintaining its original mass, thereby achieving highly restricted and long-lived photons in the cavity.

This discovery began with a chance observation during the use of near-field optical microscopy to scan 2D material structures in another project. Near field microscopy allows for excitation and measurement of polaritons in the mid infrared range of the spectrum, and researchers have noticed that these polaritons reflect abnormally strongly from the edges of the metal. This unexpected observation sparked deeper research, enabling a unique constraint mechanism and its relationship with the formation of nanorays.

However, the team was very surprised when producing and measuring cavities. "Experimental measurements are usually worse than theory suggests, but in this case, we find that the performance of the experiment is better than optimistic simplified theoretical predictions," said Dr. Hanan Herzig Sheinfux from the Department of Physics at the University of Bayland, the first author. This unexpected success has opened the door to new applications and advancements in quantum photonics, breaking through what we consider possible boundaries.

Dr. Herzig Sheinfux conducted this study with Professor Koppens during his postdoctoral studies at ICFO. He plans to use these cavities to observe previously thought impossible quantum effects and further investigate the interesting and counterintuitive physics of hyperbolic phonon polariton behavior.

Source: Laser Net

Related Recommendations
  • Purchase Atomstack S20 Max 657W laser engraving machine from CAFAGO for 20 euros

    Want to unleash your creativity with cutting-edge laser engraving machines? The new Atomstack S20 Max 20W laser engraving machine is your perfect choice! With a series of groundbreaking features and larger creative space, this machine's beast will completely change your laser carving experience.Farewell to restrictions! The Atomstack S20 Max has a wide working area of 850 * 400mm, and can easily m...

    2023-11-11
    See translation
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    See translation
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    See translation
  • Old brand laser manufacturers win major orders in the nuclear industry

    Recently, Laser Photonics Corporation (LPC) claims to have successfully secured an order from ES Fox Limited to provide them with the CleanTech 500-CTHD laser cleaning system.ES Fox Limited, founded in 1934, is recognized as a leader in the industrial manufacturing and construction industry in Canada. Its nuclear service department has invested millions of hours to support the nuclear power indust...

    2024-05-28
    See translation
  • Sales and order volume of Deutsche Bahn Group have decreased

    Recently, TRUMPF, a leading global provider of machine tools and laser technology solutions, released preliminary data for the 2023/24 fiscal year: compared to the previous fiscal year, sales decreased by about 4% year-on-year to 5.2 billion euros; The order amount decreased by 10% to 4.6 billion euros. The Tongkuai Group ended its 2023/24 fiscal year on June 30, 2024, with a decrease in both s...

    2024-07-22
    See translation