English

New photon avalanche nanoparticles may usher in the next generation of optical computers

729
2025-02-28 09:38:59
See translation

A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nanoscale (comparable in size to current microelectronic devices). By utilizing an optical phenomenon called 'intrinsic optical bistability', this method provides the possibility to achieve smaller and faster next-generation computer components.

 



This is the first time that the existence of intrinsic optical bistability has been practically verified in nanomaterials, "said Emory Chan, a molecular foundry scientist at Berkeley Laboratory and co first author of the paper." We are not only able to stably prepare such materials, but also have a deeper understanding of their counterintuitive properties, which is crucial for achieving large-scale optical computers
Postdoctoral researcher Xiao Qi is in the laser room of Molecular Foundry.

This research is an important component of Berkeley Lab's overall strategy to promote the development of smaller, faster, and more energy-efficient microelectronic devices through new materials and technologies.

For decades, scientists have been dedicated to developing new computers that replace electricity with light. Materials with intrinsic optical bistability (IOB) - the ability to switch between two states (such as bright light emission and complete extinction) through optical signals - are expected to become the core components of optical computers. However, the optical bistability in previous studies mainly appeared in bulk materials, which have a size far beyond the requirements of microchips and are difficult to mass produce. Although there have been occasional reports of nanoscale IOB, its mechanism is still unclear and is usually attributed to the heating effect of nanoparticles, which is inefficient and difficult to control.

However, the latest research by Chan and his team suggests that the novel photon avalanche nanoparticles have the potential to overcome the challenges of achieving nanoscale IOBs. In experiments at the Berkeley Laboratory Molecular Foundry (Nanoscience User Facility), researchers prepared 30 nanometer nanoparticles using potassium lead halide materials doped with neodymium (a rare earth element commonly used in lasers). When excited by infrared laser, these particles exhibit a "photon avalanche" phenomenon: a small increase in laser power can lead to a disproportionately large increase in particle luminescence intensity. The team discovered this "extremely nonlinear" characteristic as early as their groundbreaking paper in 2021, when experiments showed that doubling laser power could increase luminous intensity by tens of thousands of times.

In the latest research, the team found that the nonlinear strength of the new nanoparticles is more than three times that of the original avalanche particles. Chan emphasized, "This is the highest observed nonlinearity value of the material so far." What is even more surprising is that further experiments have shown that these particles not only exhibit avalanche characteristics when exceeding a specific laser threshold, but also continue to emit light even when the power drops below the threshold, completely extinguishing only at extremely low power. This means that these tiny particles are exactly the IOB materials that nanoscientists have been pursuing for a long time.

Chan explained that the significant difference between the "on" and "off" thresholds indicates that in the intermediate power range, the brightness of nanoparticles depends only on their historical state. The ability to switch optical properties without changing the material itself makes it an ideal candidate for nanoscale optical memory, especially volatile random access memory.

To investigate the physical mechanism of bistability, researchers have revealed for the first time through computer modeling that the IOB of nanoparticles does not originate from thermal effects, but from the extremely nonlinear characteristics of photon avalanche and the unique structure that suppresses particle vibration. Future research will focus on exploring new applications of optical bistable nanomaterials and seeking novel nanoparticle formulations with higher environmental stability and optical bistability.

Molecular Foundry is a nanoscience user facility under Berkeley Lab. This study was funded by the Office of Science at the US Department of Energy and received additional support from the Defense Advanced Research Projects Agency (DARPA) and the National Science Foundation.

Source: opticsky

Related Recommendations
  • Bodor Laser has been approved by Shandong Engineering Research Center

    Recently, the Development and Reform Commission of Shandong Province announced the list of Shandong Engineering Research Centers for 2024. bodor Laser has been recognized as the "Advanced Laser High end Intelligent Manufacturing and Application Shandong Engineering Research Center" and is the only enterprise in the laser intelligent manufacturing industry to be listed.As an important component of ...

    2024-07-17
    See translation
  • Reverse Modeling of 3D Scanning Reading in Hong Kong: Production Innovation in the Digital Era

    In the wave of the digital age, Hong Kong, as an international business center, constantly explores the application of new technologies in the manufacturing industry. Among them, 3D scanning and reverse modeling technology is emerging, bringing a new production innovation to the manufacturing industry. This article will explore the application of 3D scanning and reverse modeling in Hong Kong, as w...

    2024-03-30
    See translation
  • Surface coupled laser technology manufacturer, secured £ 2.94 million in financing

    Recently, renowned surface coupled laser technology supplier Vector Photonics announced that it has received £ 1.667 million in equity investment and £ 1.27 million in additional research funding for the continued commercialization of its unique surface coupled laser (SCL) technology. Surface coupled lasers have completely changed semiconductor laser manufacturing, improving the performance of var...

    2024-06-14
    See translation
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    See translation
  • Luxium Solutions completes strategic acquisition of Inrad Optics, a leading optical materials company

    Recently, Luxium Solutions, a high-performance crystal material supplier, announced the successful completion of its strategic acquisition of Inrad Optics, a leading optical materials company. This milestone transaction not only greatly enriches Luxium's innovative product matrix, but also injects valuable resources, operational wisdom, and capital drive into Inrad Optics. Both parties will work t...

    2024-07-20
    See translation