English

Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

189
2024-04-01 14:30:57
See translation

Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty per square micrometer of surface.

Experiments have shown that under a small amount of pulse, three-dimensional nanostructures appear on the crystal surface, forming parallel convex stripe patterns. When 25-30 laser pulses are applied to silicon per square micrometer, the stripe pattern becomes a maze composed of irregularly shaped protrusions. Scientists believe that this effect is due to the heating and partial melting of materials under intensive laser processing, resulting in changes in surface structure.

"We have slightly changed the laser processing technology accepted by the scientific community: when the material is not in an air environment but in a liquid environment, that is, in methanol, we have achieved this. This makes it possible to prevent silicon oxidation, prevent any debris from entering the material surface, and form regular and dense nanostructures," said Sergei Shubayev, a junior researcher at the FAB RAS Institute for Automation and Control Processes, quoted by the Russian Science Foundation.

The author also discovered how the patterns on the crystal surface change according to the polarization of the laser beam, which reflects the direction of the electric and magnetic field vectors of light waves in space. For example, if the oscillation of the electric field vector occurs on a single plane, the laser can form parallel lines and spherical structures on the surface. When the electric field vector rotates in a plane perpendicular to the direction of light propagation, only spherical convex surfaces are formed on the crystal surface. Finally, when polarization changes, the oscillation of the electric field vector becomes perpendicular to the axis of the beam, and the laser beam takes on a donut shape: when it shines on the surface, nanostructures resembling wheat spikes appear.

The researchers evaluated the ability of the obtained samples to absorb light. They found that all patterns reflected light and lost no more than 5% of the light. In order to demonstrate in practice that laser processing makes monocrystalline silicon more sensitive to light than the original sample, the author designed a photodetector based on the material. The sensitivity of this device to infrared radiation is twice that of detectors using traditional silicon crystals.

Source: Laser Net

Related Recommendations
  • Researchers at the Massachusetts Institute of Technology have designed a new type of quantum light source using lead salt perovskite nanoparticles

    Most traditional quantum computing uses the spin of supercooled atoms or individual electrons as quantum bits, which form the foundation of such devices. By comparison, if light is used to replace physical entities as basic quantum bits, ordinary lenses and optical detectors can replace expensive devices to control the data input and output of quantum bits.Based on this, chemistry professors Moung...

    2023-10-09
    See translation
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    See translation
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    See translation
  • Switzerland's top 100 sales drop to 330.9 million Swiss francs in the first half of the year

    Recently, Swiss company Bystronic disclosed its financial performance for the first half of 2024.The financial report shows that the market situation for the Swiss Super 100 in the first half of 2024 remains very tense. Customers in various end markets are unable to fully utilize their production capacity, and operations in all regions are relatively cautious.Despite Swiss supercar actively reduci...

    2024-07-24
    See translation
  • The wide application of laser plastic welding technology in the field of automobile manufacturing

    With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic...

    2024-09-26
    See translation