English

Ultra wideband pulse compression grating for single cycle Ava laser implemented by Shanghai Institute of Optics and Mechanics

419
2023-10-01 13:24:32
See translation

Recently, Shao Jianda, a researcher of Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Jin Yunxia, a researcher team, and Li Chaoyang, a researcher of Zhangjiang Laboratory, have made breakthroughs in the field of ultra wideband pulse compression gratings.

The research team has successfully developed a ultra 400 nm broadband gold grating for single cycle pulse compression needs. Its diffraction efficiency is greater than 90% in the wavelength range of 750-1150 nm, which is nearly twice the bandwidth of the current gold grating. Moreover, its development aperture can be further pushed to the meter level. The related achievements were published in the journal Nature Communications under the title of "400nm ultra wideband gradients for near single cycle 100 Petawatt lasers".

The compression of pulse width from 10-20 cycles to a single cycle (3.3 fs), combined with high-energy loading, is considered the future of realizing Ava lasers. The research team has long been deeply involved in the field of broadband high threshold pulse compression gratings. In the progress of this work, a breakthrough has been made in the simulation design of ultra wideband gold gratings, introducing azimuth angle to expand the design and application degrees of freedom; We have mastered the evolution law of grating groove shape in experiments, invented the technology of large bottom width and small sharp angle gold grating (patent number: CN114879293B), and successfully developed 1443 g/mm and 1527 g/mm ultra 400 nm broadband gold gratings (Figure 1).

The ultra wideband grating with such broadband and high threshold (better than 0.3J/cm2) will play a crucial role in the wide angle non collinear optical parametric chirped pulse amplification system [WNOPCPA, Laser Photonics Rev 172100705 (2022). https://doi. org/10.1002/lpor. 202100705]. Theoretical calculations have shown that it is sufficient to support 4 fs pulse compression and can reduce the grating aperture required to achieve 100 beat watts from the meter level to the half meter level.

Figure 1 400 nm ultra wideband gold grating
Chirped pulse amplification (CPA) and its derivative technologies have driven the peak laser power from terawatts to the 10PW level, and pulse compressors have become the core module of high-power, ultra strong, and ultra short laser devices. Due to the single channel load capacity of large aperture, wide spectrum, and high threshold compressed gratings, countries such as China, Europe, the United States, Russia, and South Korea have deployed multi channel coherent synthesis of 100 PW or even Ava level laser facilities. In addition, single cycle (3.3fs) pulses are also an important strategy for generating Aiwa level lasers.

In recent years, technologies such as WNOPCPA have been able to expand the bandwidth of gain media to 400 nm in engineering, thereby supporting 3-6 fs of Fourier transform limit pulses. The ultra wideband grating that supports single cycle pulse broadening and compression is a core technical challenge in achieving single cycle Ava laser. At present, the team is pushing the caliber of ultra wideband gratings to the meter level and applying them to the principle prototype of a single cycle Ava laser.

The research work has received support from the National Key R&D Plan, National Natural Science Foundation of China, Ministry of Science and Technology, and Shanghai Strategic Emerging Industry Project.

Figure 2 illustrates the concept of ultra wideband compression, where the bandwidth, efficiency, and threshold of the compressed grating determine the width and peak power of the compressed pulse

Source: Shanghai Institute of Optics and Precision Machinery

Related Recommendations
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    See translation
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    See translation
  • The Mysteries of Atmospheric Chemistry: Transient Absorption Spectroscopy Study Using FERGIE

    backgroundDr. Daniel Stone's research team from the University of Leeds in the UK is primarily focused on the study of oxidation reactions in the atmosphere and combustion processes. Dr. Stone is particularly interested in the chemical reaction processes of active substances that can control atmospheric composition and fuel combustion processes, such as hydroxide (OH), peroxide (HO2), and Crigee i...

    2024-03-06
    See translation
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    See translation
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    See translation