English

Aalyria plans to establish a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space

845
2023-10-26 16:20:40
See translation

Aalyria is establishing a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space. The maritime part of the plan is about to be pushed forward.

Recently, this DC based laser communication network company announced the signing of a memorandum of understanding with HICO Investment Group, which focuses on investing in shipping and logistics companies. According to the agreement, Aalyria will deploy up to 200 Tightbeam laser terminals on ships in the Middle East, Asia, Europe, Africa, and the Caribbean.

Good grid division: Aalyria stood out from stealth last year, obtained a large number of IPs from Alphabet, and plans to completely change connectivity. The company has two products:
Tightbeam is a laser terminal that can simultaneously transmit speeds of 100 Gbps per wavelength in both directions. This terminal can be connected to ground, sea, air, and space platforms.

Spacetime is a network orchestration software that can draw the most effective route for a segment of data on a large network. The company has signed a contract with Rivada Space Networks to coordinate communication for its planned 600 bird constellations.

Aalyria's laser communication method can eliminate the need to lay miles of fiber optic cables or connect to pure satellite networks for fast connectivity.

It's a bit like going from copper to fiber optic, going back to the past, "Aalyria CEO Chris Taylor told Payload. This is a very big turning point in connectivity.

Contract: According to this memorandum of understanding, Aalyria will collaborate with HICO to deploy its second-generation universal joint laser terminals on up to 200 ships in multiple regions. This is the first commercial agreement signed by the company to deploy terminals on board ships.

Source: Laser Network

Related Recommendations
  • Researchers use non classical light to achieve multi photon electron emission

    Strong field quantum optics is a rapidly emerging research topic that integrates nonlinear optoelectronic emission elements rooted in strong field physics with the mature field of quantum optics. Although the distribution of light particles (i.e. photons) has been widely recorded in both classical and non classical light sources, the impact of this distribution on the photoelectric emission proces...

    2024-05-20
    See translation
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    See translation
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    See translation
  • Scientists use the light inside fibers as thin as hair to calculate

    Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers."Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next majo...

    2024-01-20
    See translation
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    See translation