English

Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

810
2023-09-25 16:02:52
See translation

Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.

This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this batch of plans (an "important project of common interest in Europe") will support the company's independent investment, research, and development of innovative optoelectronic components there.

(Image source: ams Osram)

In its recent announcement, Osram stated that it is "working to strengthen its development and manufacturing base in Regensburg for future investments". On September 18th, at a related event of the Federal Ministry of Economic Affairs and Climate Action in Germany, the company introduced its project initiated within the scope of IPCEI microelectronics and communication technology.

For the planned public funding, the German Federal Ministry of Economic Affairs and Climate Action emphasizes the significant importance of the project within Europe and supports cooperation with the Bavarian Ministry of Economic Affairs, Regional Development, and Energy for related investments. The statement stated: "300 million euros will mainly be invested in research and development activities for innovative optoelectronic semiconductors and their manufacturing processes, thereby creating 400 new high-tech jobs.

In addition, Osram will also invest in new clean rooms and laboratory facilities for research, development, and experimental production. These facilities will be used for applications such as UV-C LEDs for disinfection, near-infrared emitters for autonomous LiDAR, and applications in the context of Industry 4.0.

Another special focus will be on microLEDs for new types of displays. Osram pointed out that "automation and artificial intelligence play an important role in Regensburg, enabling us to open up Xintiandi in production facilities." The first 8-inch wafer production pilot assembly line is currently under construction, in order to launch cost-effective mass production of highly innovative microLEDs in the near future.

Aldo Kamper, CEO of Osram, said, "By expanding our development activities in the field of optoelectronic semiconductors, we can create space for innovation and accelerate the time to market of our products. At the same time, our investment is a clear commitment to Regensburg as an industrial center, Bavaria as a high-tech base, and Europe as a breeding ground for innovation.

He added, "In Regensburg, we create new, energy-efficient products and production processes to drive digitization, thereby supporting European green agreements and European autonomy in the semiconductor industry. Under our future oriented 'Rebuild the Base' plan, we will continue to establish our market leading core competitiveness and shape the future of the semiconductor market from this Bavarian city.

Hubert Aiwanger, Minister of Economic Affairs of Bavaria, said, "Osram represents the high-tech manufacturing in Regensburg. As the Bavarian government, we are interested in participating in the financing of the IPCEI project. This is fully in line with our intention to further expand Bavaria as a top international base in the semiconductor industry. Every euro has received good investment and will create new job opportunities in a highly innovative environment.

Source: Ofweek

Related Recommendations
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    See translation
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    See translation
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    See translation
  • The construction of Hefei Advanced Light Source Project held a launch ceremony, expected to be completed and released in 5 years

    Recently, in the Future Science City of Hefei City, Anhui Province, the National Major Science and Technology Infrastructure Project and Supporting Projects of Hefei Advanced Light Source announced the start of construction, with a planned land area of approximately 656 acres. The first phase of the project is expected to be completed by September 2028.After completion, it will become an internati...

    2023-09-23
    See translation
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    See translation