English

Ortel launches advanced 1550nm laser to enhance LiDAR and optical sensing functions

381
2024-03-16 09:39:57
See translation

Ortel belongs to the Photonics Foundries group and has launched its latest innovative product - the 1786 1550 nm laser module, aimed at significantly improving optical sensing in various applications. This laser module is designed specifically for continuous wavelength operation and is a key component of systems that require coherent light sources for precise sensing in environments with fluctuations in temperature and humidity levels.

Gyo Shinozaki, Executive Vice President and General Manager of Ortel, expressed enthusiasm for this release: "The launch of the 1786 laser marks an important milestone, as Ortel's first product release after integration with Photonics Foundries marks the beginning of a series of breakthrough technological developments that our customers can expect.".

The characteristics of the 1786 laser are narrow linewidth, multiple output power options, and a linewidth of up to 300 KHz. It offers 40mW, 50mW, and 63mW models to meet different design requirements. The packaging of this device adopts a standard 14 pin butterfly package with a built-in thermoelectric cooler, which can maintain performance stability under different temperature and humidity conditions. The 1786 laser complies with the Telcordia GR-468 standard, ensuring reliability and complements Ortel's 1790 model, which is known for its ultra narrow linewidth below 100 kHz.

The launch of the 1786 laser has expanded Ortel's application portfolio in LiDAR and optical sensing, meeting a wide range of industrial needs, from material characterization and mechanical strain monitoring to terahertz spectroscopy, interferometry, and precise position and interferometry measurements.

Source: Laser Net

Related Recommendations
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    See translation
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    See translation
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    See translation
  • NASA will demonstrate laser communications from the space station

    NASA's ILLUMA-T payload communicates with the LCRD via laser signals.NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to...

    2023-09-02
    See translation
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    See translation