English

University of California, Los Angeles Joins the American High Power Laser Facility Alliance

748
2023-09-15 15:34:11
See translation

The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.

Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.

The Phoenix Laser Laboratory at the University of California, Los Angeles is led by physics professors Troy Carter and Cristoph Niemann and has one of the highest energy lasers in the university. Phoenix lasers can be emitted into large plasma devices 20 meters (nearly 66 feet) long to reproduce conditions similar to astrophysical explosions such as coronal mass ejections or supernovae.

As part of LaserNetUS, the University of California, Los Angeles will also support experiments related to laser fusion as a potential carbon free and infinite energy source in the future.

Recently, the national ignition device at Lawrence Livermore National Laboratory demonstrated this concept for the first time, which is much larger than the Phoenix Laboratory. The Phoenix laser will assist in conducting laser target and cavity coupling research and testing the necessary scientific instruments.

Source: Laser Network

Related Recommendations
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    See translation
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    See translation
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    See translation
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    See translation
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    See translation