English

The Japanese team uses laser technology for ice core sampling to accurately study climate change

992
2023-09-23 10:20:57
See translation

Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.


The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast Antarctica)
(Image source: RIKEN)


The depth resolution of the new system is 3 millimeters, three times lower than the currently available resolution, which means it can detect temperature changes that occurred in a shorter period of time in the past.

The new laser melting sampler (LMS) is expected to help reconstruct continuous annual temperature changes thousands to hundreds of thousands of years ago, which will help scientists understand past and present climate change. This study was published in the Journal of Glaciology on September 19, 2023.

Draw a climate history map
Tree rings can tell us the age of trees, and the color and width of the rings reveal information about the local climate in those years. The annual growth of glaciers can also tell us this information, but it often takes much longer. The team of scientists led by Yuko Motizuki also hopes that they can study past climate change by analyzing cylindrical ice cores extracted from glaciers.

By regularly sampling along the core, researchers can reconstruct a continuous temperature distribution. However, for samples collected from depths, this is impossible because the annual accumulation there is usually compressed to sub centimeters.

Currently, scientists typically use two standard ice core sampling methods. One method yields a depth accuracy of approximately 10 millimeters, which means that data accumulated for years less than 10 millimeters will be lost, and any significant climate change event will be missed. Another method has good depth accuracy, but it destroys some of the samples required for analyzing water content, which is the main method used by scientists to calculate past temperatures.

The new laser melting sampler overcomes these two problems: it has high depth accuracy and does not damage the key oxygen and hydrogen isotopes found in water, which are necessary for inferring past temperatures.

From: Ofweek





Related Recommendations
  • LIS Technologies closes $11.88 million seed round of financing

    On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing. According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a numb...

    2024-08-22
    See translation
  • Laser giant announces launch of new fiber laser platform

    Recently, Coherent Corp. announced the launch of the EDGE FL TM high-power fiber laser series, tailored specifically for cutting applications in the machine tool industry. The power levels of the EDGE FL series range from 1.5kW to 20kW, redefining the balance between value and performance to meet the growing demand for high-power, reliable laser sources in fiber laser cutting.With the increasing d...

    2024-10-23
    See translation
  • NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

    Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and te...

    2023-10-13
    See translation
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    See translation
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    See translation