English

Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

642
2024-08-09 14:10:35
See translation

The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;
An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;

Based on over 20 years of experience in pulse laser technology.

Shanghai, China, August 8, 2024- AMS, a leading global optical solutions provider, announced today that it will launch an innovative high-performance 8-channel 915nm SMT pulse laser - SPL S8L91A_3 A01- to empower autonomous driving, simplify system design, and enhance performance, making long-range detection lidar more efficient and reliable. The SPL S8L91A_3 encapsulated by QFN has been applied to the laser radar systems of autonomous vehicle such as passenger cars, trucks and driverless taxis, greatly improving the operation, navigation and data processing capabilities of the auto drive system.

SPL S8L91A_3 A01 application image (Image: AMS Osram)

In autonomous driving applications, SPL S8L91A_3 A01 is used to significantly enhance long-range high-resolution LiDAR systems. With AEC-Q102 certification and an 8-channel EEL (edge emitting laser) packaged in QFN, AMS Osram now offers a more diverse range of infrared components for system developers to choose from. The peak optical power of this new product is 1000W, with an efficiency of up to 30% and outstanding performance.

Autonomous driving is one of the most discussed topics about the future, and most system suppliers firmly believe that LiDAR is essential for advanced autonomous driving. For over 20 years, in the field of development and production of automotive LiDAR pulse infrared lasers, AMS Osram has been an important participant in the autonomous driving market - delivering over 20 million units, with experience and quality fully recognized by the market. SPL S8L91A_3 A01 is the latest product lineup launched based on the company's rich experience in automotive LiDAR technology.

SPL S8L91A_3 A01 is an advanced infrared high-power SMT laser tailored for laser radar applications. It adopts a single-chip integrated 8-channel design, with each laser channel providing 125W of power, resulting in a total peak optical power of 1000W, greatly enhancing the performance of long-distance laser radar systems that are crucial for highway autonomous driving. This laser has 4 individually addressable anodes, each connected to two parallel operating laser channels. Thanks to the addressing function, customers are able to flexibly design the final product.

SPL S8L91A_3 A01 product image (Image: AMS Osram)

The use of integrated laser packaging can achieve more compact and efficient settings, without the need for alignment between multiple components, thus simplifying the design and manufacturing process. This integration not only shortens development time, but also significantly improves the reliability and performance of the final product. The design of this laser adopts the proprietary wavelength stabilization technology of AMS Osram, which can significantly reduce wavelength drift caused by temperature changes, thereby improving the signal-to-noise ratio (SNR) of the laser radar system and expanding the detection range.

SPL S8L91A_3 A01 is designed to meet the strict requirements of the automotive industry, with performance specifications that meet and exceed AEC-Q certification standards. The QFN packaging of this laser is key to ensuring reliable design and providing a durable solution to meet the challenges of automotive environments. In addition to the laser radar system that can be widely used in autonomous vehicle, the new laser can be used in industrial laser radar, which can improve the performance of applications such as robots, security monitoring, smart cities and the last mile delivery.

Our new 8-channel laser module will revolutionize the autonomous driving industry. It simplifies system design and improves performance, making long-range LiDAR systems more effective and reliable. By integrating our advanced wavelength stabilization technology, we can ensure excellent performance under different working conditions, "said Clemens Hofmann, Senior Chief Engineer of AMS Osram Lidar
SPL S8L91A_3 A01 will be launched this autumn.

Source: AMS Osram

Related Recommendations
  • Diffractive optical elements: the behind the scenes hero of structured light laser technology

    In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Ho...

    2024-04-10
    See translation
  • Duke University: Laser imaging holds promise for early detection of risky artworks

    Compared to Impressionist paintings taken 50 years ago, upon closer inspection of Impressionist paintings in museums, you may notice some strange things: some are losing their bright yellow hue.Taking the dramatic sunset in Edward Munch's masterpiece "The Scream" as an example. The once bright orange yellow parts of the sky have faded to off white.Similarly, in his painting "The Joy of Life", Henr...

    2024-05-14
    See translation
  • The influence of laser beam drift on SLM thin-walled TC11 specimens at high scanning speed

    AbstractDue to the width of the laser melt pool and the sintering effect on the surrounding powder, the experimental size of the selective laser melting (SLM) sample will be larger than the design size, which will greatly affect the dimensional accuracy and surface quality of the thin-walled sample. In order to obtain SLM thin-walled TC11 specimens with precise dimensions, an orthogonal experiment...

    02-24
    See translation
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    See translation