English

A New Method for Controlling Light Polarization Using Liquid Crystal to Create Holograms

419
2024-03-12 14:16:36
See translation

Researchers have made significant breakthroughs in controlling optical polarization, which is a key characteristic of various applications such as augmented reality, data storage, and encryption.

This new method was developed by a group of scientists using liquid crystals to create holograms, which can manipulate the polarization of light at different points. This represents a significant advancement in existing methods. The work was published in eLight magazine.

Traditional vector holography methods involve manipulating the polarization and intensity of light, typically relying on metasurfaces - aimed at controlling the structure of light waves. However, these metasurfaces are static and lack the flexibility required for dynamic photon applications.
This new method overcomes this limitation by using single-layer liquid chromatography, which is known for its ability to change its characteristics under an electric field, making it an ideal choice for dynamic control. Researchers have developed a new encoding method that allows LC to display multifunctional and adjustable vector holography, where polarization and amplitude can be independently controlled at different positions.

This innovation has the potential to completely change various fields. For example, it can obtain a more secure encryption method by creating complex dynamic holograms that are difficult to replicate. In addition, it can pave the way for higher resolution displays and even active holographic video projection.

The research team is optimistic about the impact of their work on the real world. They believe that this new method, which does not require complex manufacturing processes, can be easily integrated into existing technologies, opening up exciting possibilities for the future of displays, information encryption, and metasurface applications.

This is a significant development in the field of optics, and its potential applications are enormous. The work of researchers highlights the power of combining advanced materials with innovative design technologies to achieve far-reaching breakthroughs.

Source: Laser Net

Related Recommendations
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    See translation
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    See translation
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    See translation
  • New types of lenses in optics: Researchers develop hybrid achromatic lenses with high focusing efficiency

    Researchers at the University of Illinois at Urbana Champaign have developed compact visible wavelength achromatic mirrors using 3D printing and porous silicon, which are crucial for miniaturization and lightweight optical devices. These high-performance hybrid micro optical devices can achieve high focusing efficiency while minimizing volume and thickness. In addition, these microlenses c...

    2023-12-11
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    See translation