Polski

New LiDAR can 'see' faces from hundreds of meters away

873
2025-02-11 15:58:55
Zobacz tłumaczenie

At a distance of 325 meters, the human eye may only be able to distinguish between a person's head and body, making it difficult to discern any other differences. But a research team including Heriot Watt University in the UK and Massachusetts Institute of Technology in the US has developed a new type of LiDAR scanner that can perform detailed analysis of a person's face from such a distance and create a 3D model of the face. This LiDAR can even capture ridges and indentations as small as 1 millimeter.

 



The relevant paper was published in the latest issue of the journal Optics. The team has designed a single photon time-of-flight lidar system. The system emits laser pulses, which reflect back to the device after colliding with objects. Lidar can determine the shape of an object by measuring the time required for each pulse to travel back and forth. The system is capable of obtaining high-resolution 3D images of objects or scenes up to a distance of 1 kilometer. Even in harsh environments or when objects are obscured by leaves or camouflage nets, it can achieve precise imaging, greatly improving security monitoring and remote sensing capabilities.

In order to achieve improved resolution, the team carefully calibrated and adjusted different components, such as the tiny parts inside the device used to guide laser pulses. In order to enable the device to distinguish individual photons, the team used a light detection sensor based on extremely fine superconducting wires, which is not commonly used in LiDAR. In addition, it is necessary to filter out sunlight that may enter the detector and reduce image quality. Tests have shown that the system captured a 3D image of a team member's face under 45 meter and 325 meter daylight conditions, distinguishing features as small as 1 millimeter and increasing depth resolution by approximately 10 times compared to their previous records. On a smaller scale, they captured images of Lego figurines from 32 meters away.

In another test, they filmed a communication tower 1 kilometer away. The excellent depth resolution of this system means that it is particularly suitable for imaging objects in cluttered backgrounds, which is a challenge for digital cameras. The team said that creating a detailed 3D map of the surrounding environment is also crucial for autonomous vehicle and even some robots.

Source: laserfair

Powiązane rekomendacje
  • LightSolver announces the launch of the LPU100 laser computing system

    LightSolver, a laser based computing company, announced that it is a breakthrough in quantum inspired high-performance computing.Its LPU100 system utilizes the power of 100 lasers to solve optimization problems, challenging the processing time of quantum and supercomputers. The laser array of LPU100 represents 100 continuous variables and can solve up to 120100 combinations of problems, enabling ...

    2024-03-22
    Zobacz tłumaczenie
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    Zobacz tłumaczenie
  • MedWorld Advisors acquires stakes in two companies to establish MedTech Laser Group

    Recently, MedWorld Advisors, an internationally renowned healthcare M&A consulting firm, is pleased to announce the establishment of a new medical laser company, MedTech Laser Group, by acquiring shares in two similar companies.The birth of MedTech Laser Group originated from A. in Nuremberg, Germany R. C Laser GmbH and G. from Caesarea, Israel (adjacent to Tel Aviv) N. The successful acquisit...

    2024-08-12
    Zobacz tłumaczenie
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    Zobacz tłumaczenie
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    Zobacz tłumaczenie