Polski

Breaking the limits of optical imaging by processing trillions of frames per second

219
2024-04-08 15:40:00
Zobacz tłumaczenie

Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.

The team located at the INRS É nergie Mat é riaux T é l é communications research center has developed a new type of ultrafast camera system that can capture up to 156.3 trillion frames per second with astonishing accuracy. For the first time, a single ultra fast demagnetization of two-dimensional optical imaging has been achieved. This new device called SCARF (Scanning Aperture Real Time Femtosecond Photography) can capture transient absorption in semiconductors and ultrafast demagnetization of metal alloys. This new method will help advance the knowledge frontier in a wide range of fields such as modern physics, biology, chemistry, materials science, and engineering.

Professor Liang is renowned as a pioneer in the field of ultrafast imaging. In 2018, as a major developer, he made significant breakthroughs in this field, laying the foundation for the development of SCARF.

So far, ultrafast camera systems mainly use a frame by frame sequential capture method. They will obtain data through brief and repeated measurements, and then combine all the content to create a movie that reconstructs the observed motion.

Professor Liang Jinyang said, "However, this method can only be applied to inert samples or phenomena that occur in exactly the same way every time. Fragile samples, let alone non repeatable or ultrafast phenomena, cannot be observed with this method."

"For example, phenomena such as femtosecond laser ablation, interaction between shock waves and live cells, and optical chaos cannot be studied in this way," explained Liang Jinyang.

The first tool developed by Professor Liang helped fill this gap. The T-CUP (trillion frames per second compressed ultrafast photography) system is based on passive femtosecond imaging and can capture billions (1013) of frames per second. This is an important first step towards ultrafast, single shot real-time imaging.

SCARF has overcome these challenges. Its imaging method can scan the static coding aperture ultra fast without cutting the ultra fast phenomenon. This can provide a full sequence encoding rate of up to 156.3 THz for each pixel on cameras with charge coupled devices (CCD). These results can be obtained in both reflection and transmission modes at adjustable frame rates and spatial scales in a single attempt.

SCARF makes it possible to observe unique phenomena that are ultrafast, non repeatable, or difficult to reproduce, such as shock wave mechanics in living cells or substances. These advances may be used to develop better drugs and medical methods.

More importantly, SCARF promises to bring very attractive economic byproducts. Axis Photonique and Few Cycle have collaborated with Professor Liang's team to produce a saleable version of their patent pending discovery. This is an excellent opportunity for Quebec to consolidate its enviable position as a leader in photonics.

Source: Laser Net

Powiązane rekomendacje
  • High performance optoelectronic device developer "Micro Source Photon" completes B+round financing

    Recently, Weiyuan Photon (Shenzhen) Technology Co., Ltd. (hereinafter referred to as "Weiyuan Photon") announced the completion of a B+round of financing, with investors including Yicun Capital, Chenfeng Capital, and Beijing Guoqian Investment. The specific amount has not been disclosed. According to its official website, MicroSource Photonics was founded in November 2018, with the main members...

    2024-07-23
    Zobacz tłumaczenie
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    Zobacz tłumaczenie
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    Zobacz tłumaczenie
  • Stable lasers developed with mixed materials focus on autonomous vehicle, etc

    Researchers printed microscale lenses directly onto optical fibers, allowing them to tightly combine the fibers and laser crystals into a single laser oscillator.Scientists have used 3D printing polymers in new micro optical technology, which can reduce the size of lasers and be used in various new applications, including the laser radar system for autonomous vehicle technology and cancer treatmen...

    2024-01-22
    Zobacz tłumaczenie
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    Zobacz tłumaczenie