Polski

Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

531
2024-01-04 14:19:29
Zobacz tłumaczenie

According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.
The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.

It is not that the laser has been achieved, as the research project aims to characterize these nanosheets in terms of gain, temperature, and other parameters to provide data for designing future lasers.

According to the university, the team "achieved enhanced signal amplification in nanosheets through unique waveguide patterns, thereby enhancing gain and thermal stability.". These advances have had a wide-ranging impact on the applications of lasers, sensors, and solar cells, and may also affect areas such as environmental monitoring, industrial processes, and healthcare.

Under appropriate conditions, CsPbBr3 spontaneously forms atomic thick squares at around 150nm across the solution. Atomic level fine dust - quantum dots - are another form that can spontaneously form, but so far they have not provided sufficient gain for lasers.

Using micro imprinting lithography technology, waveguides were formed on a 20 x 20mm polyurethane acrylic substrate - a series of 20 μ M wide, 20 μ A long parallel channel with a depth of m, separated by 20 μ M thick wall.
These channels are filled with CsPbBr3 precursor solution and carefully wiped multiple times with a blade to evenly dose each channel.

The subsequent drying left a polycrystalline nanosheet at the bottom of each channel, which can be used for optical analysis - this is the expertise of the Busan Laboratory: the Department of Optoelectronics and Cogno Electromechanical Engineering.

"Perovskite nanosheets have properties that make them valuable for various applications," the university said. Their achievements have overcome the shortcomings of CsPbBr3 quantum dots, as their gain is essentially limited due to the short decay time of population inversion.

As part of the results, researchers created a new metric - "gain profile" - which describes the relationship between gain, spectral energy, and stripe length, and is "very convenient for analyzing local gain changes," according to the university.

The excitation and temperature dependence of the gain profile were measured, and the increase in gain and thermal stability of the polyurethane acrylate waveguide on the nanosheets was quantified.

"This enhancement is attributed to the improvement of optical constraints and heat dissipation, which is promoted by two-dimensional centroid constrained excitons and local states caused by uneven sheet thickness and defect states," said Pusan.

The collaboration between Busan National University and Oxford University in South Korea led to the publication of research results in the journal Optics: Science and Applications, titled "Enhancing perovskite nanosheets through patterned waveguides: excitation and temperature dependence of gain saturation.".

Source: Laser Net



Powiązane rekomendacje
  • The research team has solved decades long challenges in the field of microscopy

    When observing biological samples under a microscope, if the medium in which the objective lens is located is different from the sample, the light beam will be interfered with. For example, when observing a water sample with a lens surrounded by air, the light bends more strongly in the air around the lens than in water.This interference can cause the measured sample depth to be smaller than the a...

    2024-04-27
    Zobacz tłumaczenie
  • IPG launches dual beam fiber laser for additive manufacturing applications

    Recently, American fiber laser giant IPG Photonics announced the launch of a new laser series specifically designed for the additive manufacturing field.The highlight of this series of lasers lies in its integration of IPG's unique dual beam technology, which can independently regulate and simultaneously emit core and ring beams, setting a new benchmark in accuracy, efficiency, and reliability.Ba...

    2024-11-25
    Zobacz tłumaczenie
  • The First Operation of Two Color Mode in Infrared Free Electron Laser

    The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.There are over a dozen free electron lasers worldwide, with ...

    2024-02-18
    Zobacz tłumaczenie
  • ELI and LLNL strengthen transatlantic large-scale laser cooperation

    Lawrence Livermore National Laboratory (LLNL) and the Extreme Light Infrastructure (ELI) European Research Infrastructure Consortium (ERIC) have announced that they have signed a new Memorandum of Understanding. This builds on their existing decade of strategic collaboration to advance high-power laser technology.“We are looking forward to expanding our existing collaborations with ELI on areas su...

    07-09
    Zobacz tłumaczenie
  • The Welding Application of Fiber Laser in the Food and Beverage Industry

    As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exace...

    2023-10-19
    Zobacz tłumaczenie