Polski

FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

364
2024-02-14 10:10:14
Zobacz tłumaczenie

The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jointly committed to creating a compact sensor platform for laser based detection of critical underwater infrastructure such as offshore wind turbines.

Lidar systems excel in long-distance measurement and provide accurate 3D data. Although laser based systems are common for geodetic measurements on land, underwater surveying and topographic measurements traditionally rely on cameras and sonar due to underwater light attenuation and turbidity. However, the two lidar systems launched by Fraunhofer IPM are capable of conducting underwater 3D measurements and aerial depth measurements, marking a significant advancement in this field.

The underwater LiDAR system ULi uses the pulse flight time method to map underwater infrastructure with millimeter level accuracy. The system performs static scanning or scanning while underwater vehicles or ships are in motion. ULi is packaged in a pressure resistant casing, capable of diving into depths of hundreds of meters and measuring objects at distances of tens of meters. The measurement accuracy of this system is ten times that of some sonar systems, and it generates an accurate 3D model of the object.

Through the airborne depth measurement laser scanner ABS, Fraunhofer IPM has launched the first laser system capable of measuring coastal terrain from the air. The system weighs about three kilograms and is the size of a shoe box, with two lasers of different wavelengths. Although traditional laser depth measurement systems are too large and heavy for standard drones, ABS is very lightweight and does not require a flight permit. The system can measure with an accuracy of twice the depth of Secchi, with an accuracy of only a few millimeters.

ULi and ABS systems both use full waveform analysis to check measurement data. This type of signal processing can separate echo sequences modulated by water surface, water surface, and suspended particles, and extract high-resolution terrain data.

In the future, FGI will combine two systems. "The combination of these two systems provides us with a novel and powerful tool for drawing coastlines and 3D measurement objects in deep places," said Professor Juha Hyypp ä, Director of Remote Sensing and Photogrammetry at FGI, excitedly. We will see unprecedented levels of data quality.

The CoLiBri research project funded by the Fraunhofer Association is a collaborative project between FGI, Fraunhofer IPM, and the Freiburg Center for Sustainable Development. The project aims to develop a comprehensive monitoring process for underwater infrastructure and coastal areas, promote collaborative use of the system, and evaluate the potential of its various applications.

Source: Laser Net

Powiązane rekomendacje
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    Zobacz tłumaczenie
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Zobacz tłumaczenie
  • Mycronic receives first order after upgrading solid-state lasers

    Recently, Mycronic AB received its first order from SK Electronics in Japan to upgrade the installed display mask writer from a gas laser to a solid-state laser. The upgrade is scheduled to be delivered within the next two years.Image source: MycronicIt is reported that Mycronic's "Pattern Generators" department provides mask writers for display manufacturing and semiconductor production. So far, ...

    2023-10-16
    Zobacz tłumaczenie
  • Korean POSTECH develops stretchable color adjustable photonic devices

    Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.This work was carried out by the Department of Electrical Enginee...

    2024-06-11
    Zobacz tłumaczenie
  • Cannon-Brookes spotlights Singapore with SunCable solar

    Billionaire Mike Cannon-Brookes' plan to export clean energy from Australia to Singapore via a 4,200km undersea cable has gained new momentum after taking control of the stalled project.Cannon-Brookes' Grok Ventures has completed its acquisition of SunCable from the government and is advancing talks with authorities in Singapore and Indonesia, the investment firm said on Thursday. The revised plan...

    2023-09-08
    Zobacz tłumaczenie