Polski

Researchers prepare a new type of optical material with highly tunable refractive index

541
2024-06-25 12:00:16
Zobacz tłumaczenie

It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.

In the early days, glass was the main raw material for optical components. In recent years, organic resin based optical materials have developed rapidly due to their advantages of easy molding, light weight, and low cost. However, currently commercialized organic optical resins are often limited by the structural characteristics of organic molecules and polymer chains, with refractive indices generally limited to 1.4-1.6.

Refractive index is one of the important parameters of optical materials. High refractive index can reduce the thickness and curvature of optical components, while maintaining optical functional effects and achieving miniaturization of components, expanding their application range.

Based on the molecular structure characteristics of acrylic resin based UV curable optical adhesive and the practical application needs in optoelectronic display devices, the R&D team has developed a highly transparent and high refractive index optical adhesive material by optimizing the preparation of titanium dioxide nanoparticles and their composite process with acrylic resin.

The R&D personnel used electron microscopy imaging and atomic force microscopy to analyze and test the microstructure of the composite material, confirming that titanium dioxide nanoparticles are uniformly dispersed in the composite material, and the cured film has good flatness. When the mass fraction of titanium dioxide in the composite optical adhesive is 30wt% (mass percentage), the refractive index of the composite material can reach 1.67.


In addition, after being cured into a film by ultraviolet (UV), the refractive index of the material can even reach 2.0, while maintaining high transparency of over 98% and low haze of less than 0.05% in the visible light range. Moreover, precision processing of optical microstructures can be further achieved through embossing technology, which can be used to make new optical components such as display light guides. In the paper, the R&D team demonstrated that using a new type of optical adhesive to manufacture a micro prism type light guiding film can effectively improve illumination and reduce energy consumption. In the future, this achievement is expected to be widely applied in fields such as precision medicine, health lighting, and new display products.

Article source: Science and Technology Daily

Powiązane rekomendacje
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Zobacz tłumaczenie
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Zobacz tłumaczenie
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Zobacz tłumaczenie
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    Zobacz tłumaczenie
  • A new type of all-optical intelligent spectrometer

    Recently, Professor Xu Tingfa's research team from the School of Optoelectronics at Beijing Institute of Technology and Assistant Professor Lin Xing's team from Tsinghua University jointly developed a new type of Opto Intelligence Spectrometer (OIS). The device is based on diffractive neural network technology and achieves precise spectral reconstruction under spatially coherent or spatially incoh...

    2024-07-22
    Zobacz tłumaczenie