Polski

This innovation will significantly improve the sensitivity of gravitational wave detectors

401
2024-04-17 16:23:40
Zobacz tłumaczenie

In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.

However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection range of the current detector. However, they can illuminate the internal structure of neutron stars.

The solution may lie in amplifying signals through optical springs and simulating spring behavior using the radiation pressure of light. The Tokyo Institute of Technology's Japan research group, led by associate professors Kentaro Somiya and Dr. Sotatsu Otabe, has proposed an innovation: Kerr effect enhanced optical springs.

In order to make the system more sensitive without requiring more energy, researchers used special techniques in optical equipment. They introduced a material called Kerr medium. This material has a unique characteristic of changing the refractive index of light.

Due to this feature, the device can act as a harder optical spring, thereby enhancing its ability to respond to very subtle changes (such as those caused by gravitational waves) without consuming more energy. Tests have shown that this method increases the hardness of lightweight springs by 1.6 times, enabling the device to detect changes at higher frequencies (from 53 Hz to 67 Hz).

This progress paves the way for the next generation of gravitational wave detectors, which can detect elusive waves to date and provide us with an additional key to understanding the composition of the universe. The proposed design is easy to implement and introduces adjustable parameters into the optomechanical system.

Source: Laser Net

Powiązane rekomendacje
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    Zobacz tłumaczenie
  • German laser company Marvel Fusion recently raised 62.8 million euros in funding

    Recently, Marvel Fusion, a private German company dedicated to commercializing fusion energy through its own laser technology, announced that it has recently raised 62.8 million euros in Series B funding. This round of investors includes HV Capital, b2venture, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, and Deutsche Telekom. Meanwhile, Marvel Fusion has also received add...

    2024-10-12
    Zobacz tłumaczenie
  • Atomstack Maker A5 V2: A laser engraving machine suitable for beginners

    In the recent DIY field, innovative and increasingly affordable laser engraving machines have emerged, mainly designed for first-time users in this field. A particularly noteworthy example in this regard is the Atomstack Maker A5 V2 model. This device is known for its versatility and ease of use, making it an ideal choice for beginners in the world of laser engraving.The Atomstack Maker A5 V2 is a...

    2024-01-03
    Zobacz tłumaczenie
  • NASA will demonstrate laser communications on the space station to improve space communications capabilities

    Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023.ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together comp...

    2023-09-04
    Zobacz tłumaczenie
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Zobacz tłumaczenie