Polski

Multinational research team achieves breakthrough in diamond Raman laser oscillator

209
2025-02-27 14:23:54
Zobacz tłumaczenie

Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This breakthrough research achievement was recently published as a cover paper in the authoritative journal ACS Photonics in the field of optics (Chen H., Bai Z., Chen J., Li X., Zhu Z.H., Wang Y., Omatsu T., Mildren R.P., and Lu Z. Diamond Raman Vortex Lasers. ACS Photonics, 2025, 12 (2): 864-869).

Diamond, with its wide spectral transmission range and excellent thermophysical properties, exhibits unique advantages and enormous potential in expanding the wavelength of vortex light. The team innovatively combines a simple and efficient method of generating vortex rotation inside the cavity - off-axis pumping - with a traditional external cavity dual mirror standing wave diamond Raman oscillator, using a 1 μ m laser as the pump light source. By precisely adjusting the off-axis angle of the resonant cavity output mirror, Raman laser outputs of 1.2 μ m and 1.5 μ m were obtained in first-order and second-order diamond Raman oscillators, respectively, and high-quality beam control of Gaussian fundamental mode, Hermite Gaussian (HG) mode, and Laguerre Gaussian (LG) mode was successfully achieved.

First-order Raman vortex beam
In the first-order diamond Raman conversion experiment, the research team used an output mirror with a transmittance of less than 0.5% at the first-order Raman wavelength and constructed a quasi concentric resonant cavity structure. By precisely adjusting the rotation angle of the output mirror in different directions, they successfully obtained multiple modes of 1.2 μ m laser output as shown in Figure 1 (a). When the resonant cavity is in a collimated state, the laser output exhibits Gaussian fundamental modes; When the output mirror rotates off-axis in the horizontal and vertical plane directions, it produces HG1,0 and HG0,1 mode outputs; When the output mirror rotates along a 45 ° diagonal direction, an LG mode output with a hollow intensity distribution is obtained. Furthermore, by performing interferometric measurements on the LG mode beam (as shown in Figure 2 (b)), it was confirmed that it has a spiral phase distribution, indicating that it is a vortex beam. The corresponding spectral characteristics are shown in Figure 2 (c). At the maximum pump power, the experiment achieved a Gaussian fundamental mode laser output of 65.5 W and an LG mode output of 42.2 W, with corresponding conversion efficiencies of 23.8% and 15.3%, respectively.

Figure 1. First order Raman vortex rotation results: (a) First order Stokes output modes at different off-axis angles of the output mirror (b) LG mode interference results (c) First order Stokes output spectra

Second-order Raman vortex beam
In order to further expand the working wavelength range of Raman vortex rotation, the research team used the same off-axis control method in a second-order diamond Raman oscillator and successfully obtained 1.5 μ m laser outputs of different modes. The experimental results are shown in Figure 2. At the maximum pump power, a Gaussian fundamental mode output of 119.4 W and an LG mode second-order Stokes output of 22.2 W were achieved, further verifying the effectiveness and scalability of this method in high-order Raman conversion.

Figure 2. Second order Raman vortex optical rotation results: (a) Second order Stokes output modes at different off-axis angles of the output mirror (b) Second order Stokes output spectra and corresponding LG mode interference results

Summary and Outlook
As a new type of optical crystal with excellent performance, diamond has received widespread attention and achieved rapid development in recent years due to its wide spectral transmission range and outstanding thermal properties. The team from Hebei University of Technology innovatively combined a simple off-axis pumping method with traditional external cavity diamond Raman oscillators, achieving direct output of 1.2 μ m and 1.5 μ m diamond vortex rotation in first-order and cascaded diamond Raman oscillators for the first time. This study not only demonstrates the unique advantages of diamond in expanding the wavelength of vortex light, but also further broadens the application boundaries of diamond laser technology, providing new ideas and technical support for the efficient generation of high-power, multi wavelength vortex light.

Chen Hui, a doctoral student at Hebei University of Technology, is the main author of this achievement, and the team leader is Professor Lv Zhiwei, the director of the university's academic committee and the director of the Advanced Laser Technology Research Center. This work has received funding from the National Natural Science Foundation of China and the Outstanding Youth Science Foundation of Hebei Province. The team conducted systematic research on diamond Raman laser, diamond Brillouin laser, diamond structured light, and thermal management of diamond lasers. The team members have led over 100 scientific research projects, including the National Natural Science Foundation of China's major research instrument development projects, the National Key R&D Program projects, the National Defense 173 Key Project, and the Equipment Development Department's field funds. They have won more than 10 scientific and technological awards, including the First Prize for Military Science and Technology Progress of the Central Military Commission, the Second Prize for Technical Invention of Hebei Province, the Natural Science Award of the Chinese Optical Engineering Society, the Excellence Award of the "Insight Action" Equipment Competition, as well as more than 10 academic awards, such as the Individual Award of the International Optical Engineering Society, the First Prize of "Rising Stars of Light", and the Excellent Young Scholar Award of Functional Diamond.

Source: Yangtze River Delta Laser Alliance

Powiązane rekomendacje
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    Zobacz tłumaczenie
  • Scientists propose new methods to accelerate the commercialization of superlens technology

    Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.D...

    2024-03-29
    Zobacz tłumaczenie
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    Zobacz tłumaczenie
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    Zobacz tłumaczenie
  • The acoustooptic modulation of gigawatt level laser pulses in ambient air can be applied to other optical components such as lenses and waveguides

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam.The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale las...

    2023-10-12
    Zobacz tłumaczenie