Polski

Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

389
2024-04-26 15:50:05
Zobacz tłumaczenie

Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.

With the booming development of wearable technology, the demand for energy storage solutions that can adapt to the flexibility and stretchability of soft electronic devices is becoming increasingly urgent. Micro supercapacitors (MSCs) have become a highly promising deformable energy storage material due to their high power density, fast charging, and long cycle life.

However, the brittleness of traditional electrode materials such as gold (Au) poses a significant challenge in manufacturing cross electrode modes that can maintain stable performance through repeated stretching and twisting. At the same time, although eutectic gallium indium liquid metal (EGaIn) has attracted attention for its high conductivity and excellent deformability, its extremely high surface tension makes fine patterning operations exceptionally difficult.

Faced with these challenges, the research team demonstrated extraordinary innovative spirit. They cleverly utilized laser technology to accurately depict the fine patterns of EGaIn and graphene (as active materials) on stretchable polystyrene block copolymer (SEBS) substrates.

During the laser ablation process, the underlying SEBS substrate is intact and undamaged, ensuring the flexibility and durability of MSC devices. Excitingly, the surface capacitance of this new MSC can still maintain its original value after undergoing up to 1000 stretching cycles. What is even more remarkable is that these prepared MSCs can maintain stable operation under various mechanical deformations, such as stretching, folding, twisting, and wrinkling.

The research team brought together several outstanding scientists, including Professor Jin Kon Kim and Dr. Keon Woo Kim from the Department of Chemical Engineering at POSTECH, as well as Dr. Yang Chanwoo and Researcher Seong Ju Park from the Korea Institute of Industrial Technology (KITECH). Their joint efforts and wisdom have injected new vitality into the development of flexible energy storage.

Professor Jin Kon Kim is confident in this achievement, stating, "The application of laser patterned liquid metal electrodes marks an important step in the development of truly deformable energy storage solutions. With the continuous advancement of wearable technology, such innovation will play a crucial role in ensuring that our devices can adapt to dynamic lifestyles. We look forward to this technology bringing more convenient and efficient energy storage experiences to future wearable devices."

Source: OFweek

Powiązane rekomendacje
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    Zobacz tłumaczenie
  • September 2024 China International Industry Fair Machine Tool Exhibition

    The CNC Machine Tool and Metal Processing Exhibition under the China International Industry Fair gathers global intelligent machine tool equipment and focuses on cutting-edge metal processing technology. The exhibition categories cover metal cutting, metal forming, laser processing, sheet metal stamping, machine tool supporting functional components and peripheral products, with a display area of ...

    2024-09-04
    Zobacz tłumaczenie
  • A new type of flexible reflective mirror can improve the performance of X-ray microscopy

    A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the perf...

    2024-05-06
    Zobacz tłumaczenie
  • Scientists demonstrate a new optical neural network training method that can crush electronic microprocessors

    The current deep neural network system (such as ChatGPT) can quickly improve energy efficiency by 100 times in training, and "future improvements will greatly increase by several orders of magnitude. Scientists from MIT and other institutions have demonstrated a new optical neural network training method that can crush state-of-the-art electronic microprocessors.Moreover, the computational density...

    2023-09-27
    Zobacz tłumaczenie
  • Researchers have developed a quantum cascade laser in Italy

    The first all-Italian quantum cascade laser was born at the National Research Center in Pisa. The protagonists of this milestone are two researchers from the Nanoscience Institute, Lucia Sorba and Miriam Serena Vitiello, who together with their research team designed and developed this innovative device.In fact, quantum cascade lasers have unique potential for detecting gases and other molecules, ...

    2023-08-04
    Zobacz tłumaczenie