English

The world's first tunable wavelength blue semiconductor laser

378
2024-11-23 11:06:56
See translation

Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Letters.

 



Figure 1 (a) Schematic diagram of a tunable single-mode laser with periodic slotted structure; (b) Cross sectional side view of slotted channel. Source: Taisei Kusui, Takumi Wada, Naritoshi Matsushita et al., "Continuous wave operation of InGaN tunable single mode laser with periodically slotted structure", Applied Physics Express (2024)

Researchers from Osaka University in Japan have previously demonstrated that a transverse quasi phase matching device made of aluminum nitride and a vertical microcavity wavelength conversion device containing SrB4O7 nonlinear optical crystals can generate far ultraviolet second harmonic (SHG) at wavelengths below 230 nm.

Usually, these advanced devices require large and expensive ultra short pulse lasers as excitation sources. However, achieving practical far ultraviolet light sources requires a blue semiconductor laser with a wavelength of approximately 460 nm.

Blue nitride semiconductor lasers were originally designed for blue light technology and have now expanded to the processing of metal materials such as copper and gold, with the potential to be applied in the next generation of laser display technology. However, the oscillation wavelengths of these blue light lasers are usually multiple.

Efficient wavelength conversion devices have a very narrow wavelength receiving bandwidth, making single wavelength lasers an ideal excitation source. In addition, precise wavelength control and adjustability are also essential. Although several single wavelength blue light lasers with coarse periodic structures have been reported, none of them can achieve tunable wavelength control.

Our tunable wavelength nitride semiconductor laser oscillates in the 405 nm wavelength band, but its structure can also be easily adjusted to 460 nm, "explained Kusui Taisei, the lead author of the research team." Combined with our new wavelength conversion device, this laser can create a compact and practical far ultraviolet light source suitable for continuous use in indoor environments, effectively sterilizing and disinfecting.

With its compact design and longer lifespan, this technology can be seamlessly integrated into household appliances such as refrigerators and air conditioners, providing healthier and safer living conditions for the home environment and bringing extensive benefits to public health.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Expert discussion at IEC TC110 conference: Laser display is expected to surpass traditional display solutions

    Recently, the International Electrotechnical Commission Electronic Display Technology Committee (IEC TC110) International Standards Conference was held in Qingdao, attracting more than 120 experts, scholars, and technical representatives from around the world, including Japan, South Korea, and the United States. At the IEC TC110 conference, laser display technology has won wide recognition from in...

    02-25
    See translation
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation
  • The new method can maintain beam quality while significantly improving the power of fiber lasers

    The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated ne...

    2023-12-22
    See translation
  • German optoelectronic component manufacturer collaborates heavily to develop VCSELs lasers

    This collaboration deeply integrates the unique expertise and cutting-edge technological achievements of both companies in the field of optoelectronics, aiming to broaden the boundaries of optoelectronics innovation.EPIGAP OSA Photonics GmbH, as a leader in the research and manufacturing of optoelectronic components in Germany, is deeply rooted in multiple fields such as medical technology, indust...

    2024-08-06
    See translation
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    See translation