English

The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

174
2023-09-20 14:21:32
See translation

According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in biochemical reactions such as photosynthesis with unparalleled detail.

LCLS - II generates X-rays through a complex process. Firstly, researchers use ultraviolet lasers to separate electrons from copper plates, and then use strong microwave pulses to accelerate the electrons, which then pass through a "maze" of thousands of magnets. During this process, these electrons will oscillate back and forth and emit X-rays in a predictable and controllable manner. Researchers can image the internal structure of objects by guiding these X-ray pulses onto them.

The brightness of X-rays produced by LCLS - II is 1 trillion times that of X-rays used in the medical field, and 10000 times that of X-rays produced by its predecessor, LCLS.

Mike Dunn of SLAC explained that the brightness of X-rays has been improved in part because they have refurbished a 3-kilometer long metal tube, where electrons pass through the tube with a niobium lining. When cooled to around -271 ℃, niobium can withstand unprecedented high-energy electrons.

Nadia Zazeping from Le Chateau University in Australia pointed out that LCLS - II allows researchers to observe in unprecedented detail how biochemical processes occur at the atomic scale, making it possible to create "molecular movies" of biological processes such as mammalian visual imaging, photosynthesis, drug binding, and gene regulation.

Dunn also stated that LCLS - II can generate a large amount of bright X-rays in an extremely short period of time, allowing researchers to see what is happening inside the material, such as materials used in artificial photosynthetic devices or next-generation semiconductors, superconductors, etc. LCLS-II is a widely used research tool, just like a powerful microscope, which can observe all the details from quantum materials to biological systems, from catalytic chemistry to atomic physics.

Source: Science and Technology Daily

Related Recommendations
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    See translation
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    See translation
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

    Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which sign...

    2024-10-10
    See translation
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    See translation
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    See translation