English

Luxiner launches LXR ultra short pulse laser platform

669
2024-06-11 15:19:17
See translation

Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing.

 



Micro Miracle Master
The world of miniaturization is flourishing due to the continuous improvement of accuracy. In this intricate dance, ultrafast laser microfabrication became a master, choreographing a symphony of power, pulse stability, and pulse duration, creating micro miracles.

Power: Driving force
Imagine a sculptor waving a chisel. In the field of ultrafast laser microfabrication, power is like a sculptor's powerful blow. It determines the amount of material removed by each laser pulse. Higher power allows for faster processing or deeper cutting, which is crucial for creating complex microchannels or drilling submicron holes. However, just as heavy hands can crush fine work, excessive power in laser microfabrication can lead to unnecessary thermal damage. The importance of the following two elements lies here.

Pulse to pulse stability: Unknown hero
The artistry of sculptors does not rely solely on brute force. Consistent and controllable travel is equally important. This unwavering focus translates into pulse to pulse stability in the world of ultrafast lasers. Both short-term and long-term stability play a crucial role. Short term stability can minimize power fluctuations within a single pulse sequence, ensuring that each pulse can provide consistent energy. This consistency is transformed into a uniform feature size and depth of the entire microfabrication area. On the other hand, long-term stability focuses on maintaining consistent power output for a longer period of time. Just as a sculptor maintains a stable hand throughout the entire work process, a stable laser can ensure consistent results throughout the entire process.

X factor: Input ultrafast pulse
Ultra fast laser microfabrication surpasses traditional cutting tools. It introduces a revolutionary element: pulse duration. Ultra fast pulses interact with materials at a molecular level in femtoseconds (billionths of a second to millionths of a second) to minimize heat transfer to surrounding materials. Imagine switching from a chisel to a surgical knife. The precise cutting of a surgical knife can remove the required materials while minimizing the impact on the surrounding area, thus achieving complex microscopic features without damaging the delicate structure.

Perfect Harmony: Unmatched Control and Speed
Power provides driving force, and the stability between pulses ensures unwavering focus. The ultra fast pulse duration is like a surgical knife. This harmonious interaction enables the LXR platform to create breakthrough micro features with unparalleled control and speed. It breaks through the boundaries of miniaturization and paves the way for the advancement of microelectronics, photonics, medical equipment, and biosensors.

LXR Platform: Innovative Symphony
Finally, Antonio Raspa, Product Manager of Luxiner Solid State Laser, stated, "LXR ®  The platform represents the crystallization of years of dedicated research and development. By combining excellent power, unwavering stability, and ultrafast pulse technology, we have created a truly groundbreaking solution that enables manufacturers to redefine the possibilities of microfabrication. With the help of the LXR platform, symphonies of power, accuracy, and speed are now coming into play.

Luxiner: Dedicated to innovation and customer success
Luxiner enjoys a deserved reputation in producing powerful and reliable laser sources. The LXR ® platform upholds this tradition by ensuring optimal uptime and productivity, and is backed by Luxiner's excellent customer support and service.

Source: Laser Net

Related Recommendations
  • Laser Uranium Enrichment Company (GLE) accelerates development

    Paducah, located in western Kentucky, may become the location of the world's first commercial facility to adopt this technology.Since 2016, Global Laser Enrichment Company (GLE) has partnered with the US Department of Energy to use its unique molecular process to concentrate 200000 tons of depleted uranium "tails" stored at the former Padiuka gas diffusion plant in western Kentucky.After years of ...

    2024-06-22
    See translation
  • Rachel's latest laser welding and cutting machine processes thicker materials at lightning speed

    Rachel is a pioneer in laser technology solutions and is pleased to announce a significant update to its laser welding and cutting machines. These enhanced features aim to provide customers with faster turnaround time and higher accuracy, reaffirming Rachel Corporation's commitment to providing cutting-edge laser cutting and welding solutions to meet the needs of different industries.Lache Company...

    2024-04-07
    See translation
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    See translation
  • Researchers have created an X Lidar lidar to help airports operate during volcanic eruptions

    Engineer and inventor Ezequiel Pawelko is one of the creators of X Lidar, a laser technology that can detect volcanic ash in the atmosphere, draw safe flight paths, and maintain airport operations during volcanic eruptions. Nowadays, he is engaged in other applications such as detecting space debris, monitoring natural resources and fisheries, preventing fires, and drawing radiation and wind maps ...

    2023-12-27
    See translation
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    See translation