English

The research team has developed a mechanical luminescent touch screen that can work underwater

1444
2024-03-08 14:41:11
See translation

The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.

The team is composed of Professor Sei Kwang Hahn from the Department of Materials Science and Engineering at POSTECH and doctoral student Seong Jong Kim, who discovered a unique optical phenomenon in ALP. Subsequently, they successfully created a device to achieve this phenomenon. Their research results have been published in Advanced Functional Materials.

ALP has the ability to absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure, and undergoing mechanical quenching when the emitted light disappears. Although active research has been conducted on the use of this technology for optical displays, the precise mechanism remains elusive.

In this study, the team delved into the effects of electron capture and charging on mechanical luminescence and quenching. They successfully unraveled the mechanisms that control these two phenomena. Based on this understanding, they will be able to achieve both phenomena simultaneously by combining ALP with very thin polymer materials. This combination leads to the creation of optical display patches that can be attached to the skin.

Display patches can convey information through writing by applying a small amount of pressure to the fingers. When exposed to ultraviolet light, the patch will reset to a blank state, similar to using an eraser to erase the content of a sketchbook. In addition, the touch screen of the display screen has moisture resistance and can maintain its function even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by weak light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Related Recommendations
  • Fiber coupled single photon source meets the requirements of quantum computing

    Due to the ability of quantum computers to crack many encryption methods used in current communication systems, the security of our current communication systems is facing threats. To address this crisis, scientists are developing quantum communication systems that utilize quantum mechanics to provide stronger security. A key component of these systems is the single photon source. In order for qua...

    10-27
    See translation
  • UK venture capital group acquires MicroLED developer Plessey

    Haylo Labs, a UK company recently established by former WaveOptics CEO David Hayes, has acquired microLED developer Plessey Semiconductors.Haylo says it also plans to invest more than £100 million scaling Plessey’s production capacity over the next five years at the firm’s GaN-on-silicon site in Plymouth and beyond, in anticipation of fast-growing demand for augmented and virtual reality (AR/VR) a...

    09-01
    See translation
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    See translation
  • Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

    It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue ...

    2024-08-13
    See translation
  • Mitsubishi Electric has launched a light source module for high-capacity laser optical communication in outer space

    On August 22nd, Mitsubishi Electric Corporation, a multinational electronics and electrical equipment manufacturing company, announced that it had successfully demonstrated laser optical frequency control using a new light source module, which is a key component of a high-capacity laser optical communication network to be deployed in outer space.It is reported that this module can generate 1.5 &mu...

    2023-08-24
    See translation