English

Farnell provides its own branded 3D printing consumables

200
2024-06-03 14:56:52
See translation

Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists.".

"With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's product manager.
These materials are:

PLA (polylactic acid) is a plant-based polymer that is easy to print and rigid. Suitable for objects below 50 °, suitable for prototypes.
ABS, A polymer that is more resilient than PLA and can withstand higher temperatures than PLA. Applicable to finished products, but please refer to the ASA for outdoor applications.

TPU (Thermoplastic Polyurethane, TPE) is a flexible rubber like wear-resistant plastic (in this case, the Shore hardness is 95A) that can be used for impact absorption, soft tactile surfaces, seals, bushings, and shock absorbers.

PVA, A water-soluble material that can be used as a washing stand for printing objects printed with other materials.
PETG, Almost as easy to print as PLA, and almost as resistant to impact and heat as ABS. Used for finished products and sturdy prototypes.
PA (polyamide/nylon), semi flexible, very tough and durable, suitable for bearings, structural components, and connectors.
HIPS (High Impact Polystyrene) is limonene soluble, used to support ABS and print lightweight objects.
TPE (Thermoplastic Elastomer) is more elastic than the aforementioned TPU (Shore Hardness 83A), highly durable and fatigue resistant, with a working temperature range of -30 to 140 ° C.
ASA, It is a UV resistant alternative to ABS, with almost impact resistance and heat resistance. Suitable for outdoor applications, with a low odor when printing.

Source: Laser Net

Related Recommendations
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    See translation
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    See translation
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    See translation
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    See translation
  • Progress in the study of ultrafast electron dynamics using short light pulses

    When electrons move in molecules or semiconductors, their time scale is unimaginably short. The Swedish German team, including Dr. Jan Vogelsang from the University of Oldenburg, has made significant progress in these ultrafast processes: researchers are able to track the dynamics of electrons released on the surface of zinc oxide crystals using laser pulses with nanoscale spatial resolution and p...

    2024-01-08
    See translation