English

Cambridge scientists have achieved the long-sought quantum state stability in new 2D materials

957
2024-05-27 16:04:49
See translation

Scientists at the Cavendish laboratory have discovered the spin coherence of hexagonal boron nitride (hBN) under normal conditions, providing new prospects for the application of quantum technology.

Researchers at Cavendish Laboratory have found that a single "atomic defect" in a material called hexagonal boron nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to the ability of electron spins to retain quantum information over time. This discovery is of great significance because materials that can exhibit quantum properties under environmental conditions are very rare.

The research results published in the journal Natural Materials further confirm that the spin coherence available at room temperature is longer than researchers initially imagined. "The results indicate that once we write a quantum state onto the spin of these electrons, this information will be stored for~millionths of a second, making the system a very promising platform for quantum applications," said Carmem M. Gilardoni, co-author of the paper and postdoctoral researcher Rubicon at Cavendish Lab.

This may seem short, but interestingly, this system does not require special conditions - it can even store spin quantum states at room temperature and does not require a large magnet.

Characteristics of hexagonal boron nitride

Hexagonal boron nitride (hBN) is an ultra-thin material composed of stacked single atom thick layers, resembling a piece of paper. These layers are bonded together through intermolecular forces. But sometimes, there are "atomic defects" in these layers, similar to crystals in which molecules are trapped. These defects can absorb and emit light within the visible light range, and have clear optical transitions, and they can act as local traps for electrons. Due to these "atomic defects" in hBN, scientists can now study the behavior of these captured electrons. They can study spin properties, which allow electrons to interact with a magnetic field. What is truly exciting is that researchers can use the light in these defects to control and manipulate electron spin at room temperature.

This discovery paves the way for future technological applications, especially in sensing technology.

However, as this is the first time anyone has reported the spin coherence of the system, there is still a lot of research to be done before it matures enough for technical applications. Scientists are still studying how to make these defects better and more reliable. They are currently exploring to what extent we can extend spin storage time and whether we can optimize system and material parameters that are important for quantum technology applications, such as the stability of defects over time and the quality of light emitted by the defect.

Future Outlook and Conclusion

"The use of this system has emphasized the power of basic material research to us. As for the hBN system, as a field, we can use the excited state dynamics in other new material platforms for future quantum technology," said Dr. Hannah Stern, the first author of the paper, who conducted this research in the Cavendish Laboratory and is now a researcher at the Royal Society University and a lecturer at the University of Manchester.

In the future, researchers are considering further developing the system to explore many different directions from quantum sensors to secure communication.

"Every promising new system will broaden the toolkit of available materials, and every step towards this direction will drive the scalable implementation of quantum technology. These results confirm the prospects of layered materials achieving these goals," concluded Professor Mete Atat ü re, the head of the Cavendish Laboratory leading the project.

Source: Focus Media Network

Related Recommendations
  • Microcomb launches a simplified design for powerful lasers based on chips

    Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty ...

    2024-05-25
    See translation
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    See translation
  • China University of Science and Technology has made progress in in-situ monitoring of thermal runaway in lithium-ion batteries with optical fibers

    Recently, the team of Professor Sun Jinhua and researcher Wang Qingsong of the University of Science and Technology of China and the team of Professor Guo Tuan of Jinan University have made important achievements in the field of early warning of thermal runaway optical fiber detection of lithium-ion batteries.A high-precision, multi-mode integrated fiber optic device that can be implanted in...

    2023-09-04
    See translation
  • The future potential of underwater laser applications is unlimited

    The foundation of offshore wind turbines, port protection systems, steel sheet piles, river barriers, water gates, and even pipelines can all be directly processed in water. Another application area is the dismantling of abandoned nuclear reactors, in which case laser technology can gently dismantle steel structures underwater while minimizing the dissolution of radioactive materials.The ocean, wh...

    06-03
    See translation
  • Q.ANT Secures $18 Million in Refinancing for Photonic AI

    Q.ANT, a developer of artificial intelligence and high-performance computing (HPC) photonic processing systems, announced the completion of the second round of its Series A financing, reportedly valued at $18 million. The investment was led by Duquesne Family Office LLC, the investment firm of Stanley F. Druckenmiller. The increase brings Q.ANT’s total funding to US$80 M – claimed to be the larges...

    a day ago
    See translation