English

Microcomb launches a simplified design for powerful lasers based on chips

186
2024-05-25 14:49:56
See translation

Researchers at the University of Rochester have created new micro comb lasers that go beyond previous limitations and have simple designs suitable for various applications. The research results are published in Nature Communications.

Optical frequency combs are optical measurement instruments that have revolutionized atomic clocks, spectroscopy, metrology, and other fields. However, the difficulty of creating frequency comb generators at the semiconductor level limits their application in everyday technologies such as handheld electronic devices.

What is a micro comb?
Optical frequency combs generate spectra. They are composed of several coherent beams that are evenly spaced and adjusted to different colors or frequencies. The resulting shape is similar to the teeth on a hair comb. Scientists have been developing micro combs, a miniaturized version of this technology that can be installed on small chips.

Although progress has been made in the design of micro comb prototypes, scientists have not yet created functional versions for practical applications. Some of these challenges include low power efficiency, limited controllability, slow mechanical response, and requirements for pre configuration of complex systems.

The simplified method has been developed by a group of scientists led by Professor Lin Qiang from the Institute of Optics and the Department of Electrical and Computer Engineering at the University of Rochester, who has developed a novel strategy to solve these problems in a single device.
The main author of this paper Lin's doctoral student Jingwei Ling claimed that previous methods often relied on injecting a single wavelength of laser into a nonlinear converter, which could then convert a single wavelength into multiple wavelengths to form an optical comb.

The simplicity of the "multi in one" micro comb laser reduces power requirements, lowers costs, and has excellent adjustability and turnkey operation.
The implementation of these micro comb lasers continues to pose challenges, especially in establishing manufacturing processes to generate such small components within the required manufacturing tolerance range. However, the researchers expect their equipment to be used in telecommunications systems and autonomous vehicle for light detection and ranging (LiDAR).

The Defense Advanced Research Projects Agency and the National Science Foundation of the United States provided support for this research.

Source: Laser Net

Related Recommendations
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    See translation
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    See translation
  • Sivers Photonics has received a $1 million order for advanced optical sensing products in fields such as LiDAR and industrial applications

    Sivers Semiconductors AB announced that its subsidiary Sivers Photonics has received a new order worth $1 million for advanced optical sensing products from three customers in the fields of LiDAR, Medical, and Industrial.In the first half of the fourth quarter of 2023, new orders were received from several US clients, which will lead to the manufacturing of advanced lasers and optical amplifiers f...

    2023-11-30
    See translation
  • Laser assisted detection of past climate in ice cores

    Around the poles, ice accumulated over millions of years can reach depths of several kilometers. The undisturbed deep ice preserves information about the past. The air bags and particles trapped in the ice tell scientists what the atmosphere used to be like. This has aroused great interest among paleoclimatologists in glacier ice cores.By regularly sampling the ice core at its depth, they can reco...

    2023-11-01
    See translation
  • Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

    authorElsa Lani, Aloka SinhaabstractAt present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host m...

    2024-03-04
    See translation