English

Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

660
2023-09-18 14:53:09
See translation

Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.

As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improvement performance. After intensive testing and validation by multiple top customers, LIF technology will accelerate the introduction into mass production and assist customers in upgrading their TOPCon battery production line.

In recent years, the global efficient solar cell production capacity has been continuously released, and new technologies that can improve efficiency and reduce costs for various types of solar cell processing have attracted attention. As a leading photovoltaic equipment enterprise, Deere Laser has successfully developed multiple new laser applications such as PERC+, TOPCon+, XBC+, and HJT+, effectively assisting in the continuous upgrading of high-efficiency solar cell technology.

Laser Induced Firing (LIF) technology is a new iterative innovation process developed by Emperor Laser, following the independent research and development of Laser Induced Regeneration (LIR) and Laser Induced Annealing (LIA), A new processing technology that uses laser technology to induce sintering of solar cells.

LIF technology achieves rapid sintering and molding of materials by precisely controlling the laser beam, stacking powder or filamentous materials layer by layer and simultaneously irradiating them with laser. This technology has been widely applied in many fields due to its high efficiency, precision, and flexibility.

In the field of photovoltaics, laser induced sintering technology has the following advantages:
(1) Improving battery efficiency: By achieving precise connection of battery cells, energy consumption and heat loss are reduced, thereby improving the overall efficiency of photovoltaic modules.
(2) Improving product reliability: The precise control of laser induced sintering technology can effectively avoid welding defects and improve the reliability and service life of photovoltaic modules.
(3) Reducing production costs: The rapid prototyping characteristics of laser induced sintering technology can significantly shorten production cycles, reduce production costs, and improve production efficiency.

This technology was developed by Deere Laser in collaboration with industry clients and completed process validation on TOPCon batteries. The results show that this technology can effectively improve the photoelectric conversion efficiency of battery cells, with a gain of over 0.2%.


In TOPCon, IBC, and HJT processes, Tyr Laser has a brand new laser technology coverage. In terms of TOPCon battery technology, as of the disclosure date of the 2023 semi annual report, a total of over 450GW of new boron doped orders have been signed this year. Based on the accelerated breakthrough of the company's LIF technology, the company's TOPCon orders are expected to accelerate growth.

In terms of BC battery technology, the company's laser technology continues to receive orders this year, including orders for N-type and P-type processes. Some orders can refer to the daily operation major contract announcement in early June this year.
In terms of HJT battery technology, the company's LIA laser repair technology continues to receive mass production orders from European customers this year.
In terms of components, the company is developing a new laser welding process that can simplify production processes, reduce damage to battery cells, and improve welding quality. Currently, it has delivered a pilot line to customers.

In addition to the photovoltaic field, in the display panel industry, the company has carried out research and development and prototype trial production of laser repair, laser peeling, and other processes. In the semiconductor wafer manufacturing and packaging field, Deere Laser has carried out research and development of IGBT/SiC laser annealing, wafer laser cleaning/thinning, wafer excitation steganography, and other related technologies; In the field of consumer electronics, the company has carried out research and development of TGV laser microporous technology and completed small batch order delivery.

Source: OFweek

Related Recommendations
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    See translation
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    See translation
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    See translation
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    See translation
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    See translation