English

Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

172
2023-09-18 14:53:09
See translation

Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.

As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improvement performance. After intensive testing and validation by multiple top customers, LIF technology will accelerate the introduction into mass production and assist customers in upgrading their TOPCon battery production line.

In recent years, the global efficient solar cell production capacity has been continuously released, and new technologies that can improve efficiency and reduce costs for various types of solar cell processing have attracted attention. As a leading photovoltaic equipment enterprise, Deere Laser has successfully developed multiple new laser applications such as PERC+, TOPCon+, XBC+, and HJT+, effectively assisting in the continuous upgrading of high-efficiency solar cell technology.

Laser Induced Firing (LIF) technology is a new iterative innovation process developed by Emperor Laser, following the independent research and development of Laser Induced Regeneration (LIR) and Laser Induced Annealing (LIA), A new processing technology that uses laser technology to induce sintering of solar cells.

LIF technology achieves rapid sintering and molding of materials by precisely controlling the laser beam, stacking powder or filamentous materials layer by layer and simultaneously irradiating them with laser. This technology has been widely applied in many fields due to its high efficiency, precision, and flexibility.

In the field of photovoltaics, laser induced sintering technology has the following advantages:
(1) Improving battery efficiency: By achieving precise connection of battery cells, energy consumption and heat loss are reduced, thereby improving the overall efficiency of photovoltaic modules.
(2) Improving product reliability: The precise control of laser induced sintering technology can effectively avoid welding defects and improve the reliability and service life of photovoltaic modules.
(3) Reducing production costs: The rapid prototyping characteristics of laser induced sintering technology can significantly shorten production cycles, reduce production costs, and improve production efficiency.

This technology was developed by Deere Laser in collaboration with industry clients and completed process validation on TOPCon batteries. The results show that this technology can effectively improve the photoelectric conversion efficiency of battery cells, with a gain of over 0.2%.


In TOPCon, IBC, and HJT processes, Tyr Laser has a brand new laser technology coverage. In terms of TOPCon battery technology, as of the disclosure date of the 2023 semi annual report, a total of over 450GW of new boron doped orders have been signed this year. Based on the accelerated breakthrough of the company's LIF technology, the company's TOPCon orders are expected to accelerate growth.

In terms of BC battery technology, the company's laser technology continues to receive orders this year, including orders for N-type and P-type processes. Some orders can refer to the daily operation major contract announcement in early June this year.
In terms of HJT battery technology, the company's LIA laser repair technology continues to receive mass production orders from European customers this year.
In terms of components, the company is developing a new laser welding process that can simplify production processes, reduce damage to battery cells, and improve welding quality. Currently, it has delivered a pilot line to customers.

In addition to the photovoltaic field, in the display panel industry, the company has carried out research and development and prototype trial production of laser repair, laser peeling, and other processes. In the semiconductor wafer manufacturing and packaging field, Deere Laser has carried out research and development of IGBT/SiC laser annealing, wafer laser cleaning/thinning, wafer excitation steganography, and other related technologies; In the field of consumer electronics, the company has carried out research and development of TGV laser microporous technology and completed small batch order delivery.

Source: OFweek

Related Recommendations
  • WEC acquires precision laser cutting giant Laser Profiles Ltd

    Recently, WEC Group, a leading engineering and manufacturing company in the UK, announced that it has completed the acquisition of Laser Profiles Ltd, a precision laser cutting leader in Bournemouth. For over 40 years, WEC Group has been providing manufacturing, laser cutting, precision machining, waterjet cutting, powder coating, and CCTV installation solutions.The company stated that the acqui...

    2024-08-19
    See translation
  • Future oriented strategic technology: integrated manufacturing of large composite materials with additive and subtractive materials and its key elements

    Thermowood has developed a large-scale additive and subtractive material manufacturing equipment, LSAM, and successfully printed tooling molds on site that can be used for aerospace composite material forming, demonstrating its low-cost and rapid response to composite material manufacturing capabilities to the public.As a large-scale component additive manufacturer, Thermowood has developed a near...

    2024-04-19
    See translation
  • The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan

    The First Ultra Fast Laser Application Development Conference was held in Songshan Lake, Dongguan. The first advanced attosecond laser facility in China will have 8 beam lines landing in Dongguan.Laser enjoys the reputation of being the "fastest knife," "most accurate ruler," and "brightest light," among others. As an important research direction in the laser field, ultrafast laser has always been...

    2023-10-28
    See translation
  • Trotec Lasersysteme Darmstadt Laser Cutting Technology Center opens

    Trotec Laser, a manufacturer of laser technology in Upper Austria, is opening a new laser cutting competence center. The expanded showroom in Darmstadt now also houses three new large format laser cutters from the SP series. This strategic move is designed to meet the growing demand for large format laser cutting solutions.To celebrate the reopening of the Darmstadt Competence Centre, Trotec will ...

    2023-09-06
    See translation
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    See translation