English

Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

397
2024-05-24 14:09:09
See translation

AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.

TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security in broadband connections, surpassing traditional radio frequency communication methods.

In addition, the Dutch company FSO Instruments is a supplier of terminal core optical components, which also originate from TNO's research. This arrangement may help establish an international supply chain for laser satellite communication terminals.

TNO Space Director Kees Buyjsrogge commented, "This new collaboration highlights our commitment to accelerating technology transfer, promoting the growth of Dutch optical satellite communication capabilities, and strengthening strong networks within Europe and NATO.".

The new agreement grants Raytheon Clyde Aerospace the right to use TNO laser communication terminal technology for 20 years. These terminal sizes are 10 x 10 x 10 centimeters, suitable for small satellites that AAC Clyde Space excels at. Their goal is to manufacture a commercially viable laser communication terminal for small satellites that can be mass-produced.

In order to fully develop AAC terminals, Clyde Space requires additional optical technology, FSO instruments will provide these technologies. FSO Instruments has recently signed a similar licensing agreement to leverage TNO's technology and expertise in optical heads, optical workbenches, and coarse pointing alignment systems.

By cross licensing TNO's optical technology, it has established a supply chain for producing small satellite communication terminals, which is pioneering in the Netherlands.

Operation mode
Laser satellite communication provides links between ground stations, satellites, aircraft, and drones. Using the infrared band, laser communication can achieve data transmission speeds that are 100 to 1000 times faster than radio frequencies currently used for communication. In addition, laser communication links are considered safer because they use very narrow optical laser beams instead of wide radio signals.

Luis Gomes, CEO of Raytheon Clyde Aerospace, said, "The advancement of high data volume payloads (such as Earth observation payloads for cube satellites and small satellites) highlights the necessity of improving downlink capabilities in small sizes. The global demand for laser satellite communication applications is on the rise. Through this collaboration, we can not only leverage this demand but also strengthen the international reputation of the Netherlands in innovative new space solutions.".

Source: Laser Net

Related Recommendations
  • This innovation will significantly improve the sensitivity of gravitational wave detectors

    In 2017, the detection of gravitational waves generated by the merger of binary neutron stars marked a significant breakthrough in physics. These waves reveal important information about the universe, from the origin of short gamma ray bursts to the formation of heavy elements.However, capturing gravitational waves from the merged residue remains a challenge as these waves avoid the detection rang...

    2024-04-17
    See translation
  • Samsung and SK Hynix Explore Laser Debonding Technology

    According to South Korean media etnews, Samsung Electronics and SK Hynix have started the process technology conversion of high bandwidth memory (HBM) wafers, with the introduction of new technologies to prevent wafer warping as the core, which is considered to be aimed at the next generation HBM. It is expected that with the process transformation, the material and equipment supply chain will als...

    2024-07-16
    See translation
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    See translation
  • Xiaomi has recently invented a laser engraving machine that allows you to create screen printing and design using different materials

    3D printers have become popular worldwide, allowing you to create useful and beautiful products. This has sparked a trend towards DIY, which is "doing it yourself," even driving popular pages such as Etsy in Spain. In fact, an economy has been established around these types of handmade products. But there are more devices that can help with these types of creativity.The latest one is Xiaomi's inve...

    2023-12-26
    See translation
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    See translation