English

The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

657
2023-08-04 16:47:18
See translation

The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities.

The key component of EUV lithography is the EUV light source, which involves generating and manipulating 13.5 nm of high-energy light. This is done by using lasers to generate plasma from tin droplets, which emit extreme ultraviolet radiation. The EUV light is then reflected and focused using a series of precisely designed mirrors, transferring the desired pattern onto a silicon wafer coated with a light-sensitive material called a photoresist.

 

EUV lithography has several advantages over previous lithography techniques. First, it can significantly increase chip density, enabling the production of more powerful and complex ics.

 

Second, it simplifies the manufacturing process and increases production efficiency by reducing the number of steps required for pattern transfer. Finally, EUV lithography allows for better control of critical dimensions and reduced pattern variability, resulting in improved chip performance and yield.

 

EUV lithography plays a key role in the production of advanced ics for a variety of applications such as high-performance computing, artificial intelligence and mobile devices.

 

Foundries are expected to grow at the highest CAGR during the forecast period.

In the commercial sector, foundries are manufacturing plants that specialize in providing semiconductor manufacturing services to semiconductor companies and integrated device manufacturers (IDMs). Foundries are primarily focused on manufacturing processes for the semiconductor industry and do not engage in chip design.

 

Foundries play a vital role in the semiconductor industry by providing manufacturing services to companies that lack their own manufacturing facilities or choose to outsource chip production.

 

Fabless companies and ID work with foundries to transfer their chip designs, known as intellectual property (IP), to foundries for manufacturing. Well-known foundries that provide semiconductor manufacturing services including EUV lithography include companies such as TSMC, GlobalFoundries, Samsung Foundries, and others.

 

The growth of foundry companies can be attributed to their substantial investments in EUV lithography, with Asia-Pacific countries being the main contributors to the expansion and advancement of the EUV lithography market.

 

During the forecast period, the EUV mask segment is expected to grow at the second highest CAGR in the EUV lithography equipment market.

 

EUV masks, also known as EUV masks or EUV photomask, play a crucial role in an advanced lithography process called extreme ultraviolet lithography (EUVL). EUV lithography is a state-of-the-art technology for manufacturing the next generation of next-generation semiconductor devices characterized by smaller feature sizes and enhanced performance.

 

EUV masks help to pattern integrated circuits on semiconductor wafers by containing circuit patterns projected onto the wafer during the photolithography process. Unlike traditional optical masks used in older lithography techniques, EUV masks are specifically designed to function in ultraviolet light at wavelengths of about 13.5 nanometers. They consist of thin substrates coated with multiple layers of reflective material that help to reflect and focus EUV light onto the wafer, enabling precise and high-resolution patterning. The complex structure of the EUV mask involves advanced manufacturing techniques and strict quality control measures to ensure the accuracy and reliability of the circuit pattern. Several companies are involved in the manufacture of EUV masks and related products,

The Asia Pacific region is expected to grow at the highest CAGR during the forecast period.

 

Taiwan is home to leading semiconductor companies such as Taiwan Semiconductor Manufacturing Company (TSMC), the world's largest dedicated semiconductor foundry. TSMC has been at the forefront of adopting and advancing EUV lithography technology to be able to produce advanced chip sizes with smaller sizes and higher performance.

 

The company has made significant investments in EUV infrastructure and has been instrumental in driving the development and commercialization of EUV lithography systems. With its strong semiconductor ecosystem and commitment to technological innovation, Taiwan plays a vital role in increasing the capability and widespread adoption of EUV lithography in the semiconductor industry.

 

Some companies are innovating in EUV lithography technologies and systems. For example, in August 2020, TSMC developed the world's first environmentally friendly dry cleaning technology for EUV light hoods, designed to replace traditional cleaning processes.

 

Source: Laser Network

Related Recommendations
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    See translation
  • Scientists have successfully miniaturized erbium-based erbium lasers on silicon nitride photonic chips

    Scientists from the Federal Institute of Technology in Lausanne (EPFL) have successfully miniaturized a powerful erbium-based erbium laser on silicon nitride photonic chips. Due to the large volume and difficulty in shrinking of typical erbium-based fiber lasers, this breakthrough is expected to make significant progress in optical communication and sensing technology.Since the 1960s, lasers have ...

    2024-06-13
    See translation
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    See translation
  • Researchers use lasers to measure and manipulate magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-03-05
    See translation
  • GE Additive has been renamed Colibrium Additive, continuing to lead the additive manufacturing industry

    In April 2024, GE Additive was renamed Colibrium Additive. Colibrium Additive (formerly GE Additive) is a subsidiary of GE Aerospace Propulsion and Additive Technology (PAT) and was established at the end of 2016. Nowadays, it is a trusted partner and manufacturer of industrial metal 3D printers and metal powders, as well as a service provider for industrial metal 3D printers and metal powders. It...

    2024-04-30
    See translation