English

Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

348
2023-09-01 14:42:55
See translation

Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nickel based high-temperature alloys, and conducted a systematic evaluation of the microstructure and mechanical properties of the welded joints.

The relevant research results were published in the Materials Characterization under the title "Laser welding of GH3539 alloy for molten salt reactor: processing optimization, microstructure and mechanical properties".

GH3539 alloy is a new type of high-temperature nickel based alloy independently developed in China, with excellent high-temperature mechanical and corrosion resistance, suitable for ultra-high temperature (≥ 850 ℃) molten salt environments. However, higher alloying results in higher welding crack sensitivity of the alloy.

In order to achieve efficient and high-quality laser welding of alloy structural components, the team used fiber laser welding technology to study the effects of different welding process parameters on the welding formation of GH3539 alloy with a thickness of 3mm. Through process optimization, the generation of welding cracks, pores, and other defects was suppressed. For the first time, defect free welding formation of GH3539 alloy was achieved. Based on this, the microstructure and mechanical properties at room temperature/high temperature of the welded joint were systematically evaluated; And analyzed the tensile fracture behavior of laser welded joints, elucidated the fracture mode of alloy laser welded joints. This work has laid the foundation for promoting the development of laser welding technology and the application of GH3539 nickel based high-temperature alloy.

Figure 1: (a) Welding cross-section of GH3539 laser welded joint; (b) Microstructure of GH3539 alloy; (c) XRD results of GH3539 alloy laser welded joints; (d) Hardness distribution of GH3539 alloy laser welded joints; (e) Engineering stress-strain curves of base metal and welded joints at different temperatures; (f) Average elongation of base metal and welded joints at different temperatures

Source: Shanghai Institute of Optics and Mechanics

Related Recommendations
  • BMW uses WAAM 3D printing to optimize derivative designs

    BMW explained how to use WAAM (Arc Additive Manufacturing) starting from 2025 to manufacture lighter and stronger automotive components and reduce waste generation, in order to optimize the use of generative design tools.The demonstrated WAAM process uses aluminum wire raw materials directly deposited through laser welding heads, enabling automotive companies to manufacture lighter and more robust...

    2024-04-13
    See translation
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    See translation
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    See translation
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    See translation
  • Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

    For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. ...

    2023-09-15
    See translation