English

The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

758
2024-03-23 10:01:04
See translation

Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmission of 2.79 at room temperature for the first time μ M-band high-energy pulse laser. The relevant achievements have been published in the internationally renowned optical top journal Optics and Laser Technology.

Laser medical instruments usually require a flexible catheter to transmit the laser emitted to the patient's treatment site, but traditional mid infrared laser medical instruments mostly use a guide arm to transmit the laser. However, the traditional light guide arm transmission method for laser has many problems, such as complex system structure, low transmission efficiency, and insufficient flexibility. The use of fiber optic transmission can solve the above problems, but the material of solid core fiber has a low laser damage threshold in the mid infrared band, which cannot meet the requirements of 3 μ High energy density optical guidance requirements for m-band erbium laser medical devices. So, the research team designed and researched an AR-HCF alternative light guide arm with a simple structure, high coupling transmission efficiency, large damage threshold, and flexible transmission to transmit laser energy.

The team adopts a design with 78 μ A 6-well microstructure AR-HCF with a larger core diameter of m, efficiently transported for the first time under room temperature conditions at 2.79 μ M-band high-energy pulse laser. Without damaging the optical fiber, the average coupling transmission efficiency of the entire region is 77.3%, and the highest coupling transmission efficiency reaches 85% under high beam quality and small coupling energy. If the air absorption attenuation in the fiber core is deducted, the self transmission efficiency of the fiber optic system with this structure has actually exceeded 90%. The system achieved a maximum pulse laser energy output of 11.78 mJ, with a corresponding energy density threshold of 350J/cm2, far exceeding the required value for soft tissue ablation of living organisms. At the same time, the minimum bending radius of the AR-HCF is 20cm and the corresponding loss can meet the clinical needs of surgeons, and the laser beam quality at the output end of the AR-HCF is better than that at the input end, which has been improved significantly.

Compared to other structures and materials currently used for 2.79 μ Compared to optical fibers with m-wavelength transmission, the 6-hole structure AR-HCF of this silica has stronger mechanical stability, higher damage threshold, lower bending sensitivity, and superior transmission performance compared to traditional light guide arms. This study is 2.79 μ M Cr, Er: YSGG medical solid-state laser has opened up a new way for efficient transmission.

Figure 1. Cross section structure of AR-HCF

Figure 2.2.79 μ M AR-HCF space transmission experimental device

Figure 3. Loss of AR-HCF under different bending radii and bending directions

Source: Hefei Institute of Physical Sciences, Chinese Academy of Sciences

Related Recommendations
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    See translation
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    See translation
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    See translation
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    See translation
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    See translation