English

Observation of nanoscale behavior of light driven polymers using combination microscopy technology

330
2024-03-12 14:02:46
See translation

Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.

In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical microscopy to create films as polymer films changed.

Azo polymers are photoactive materials, which means they undergo changes when light shines on them. Specifically, light can alter their chemical structure, thereby altering the surface of thin films. This makes them very interested in applications such as optical data storage and providing light triggered motion.

The ability to use focused laser to initiate these changes during image capture is called in situ measurement.
"Usually, changes in polymer films are studied by processing them, such as by irradiating them with light and then measuring or observing them. However, the information provided is limited," explained Keishi Yang, the main author of the study. "The use of HS-AFM devices, including inverted optical microscopes with lasers, allows us to trigger changes in azo polymer films while observing them in real-time with high spatiotemporal resolution."

HS-AFM measurement can track the dynamic changes on the surface of polymer films in movies at a speed of two frames per second. It was also found that the direction of polarized light used has an impact on the final surface pattern.

Further research using in-situ methods is expected to thoroughly understand the mechanism of photo driven azo polymer deformation, thereby maximizing the potential of these materials.

"We have demonstrated our technique for observing polymer membrane deformation," said Takayuki Umakoshi, senior author of the study. However, in doing so, we have demonstrated the potential to combine cutting-edge scanning HS-AFM with laser sources for materials science and physical chemistry.

Materials and processes that respond to light are important in a wide range of fields in chemistry and biology, including sensing, imaging, and nanomedicine. In situ technology provides an opportunity to deepen understanding and maximize potential, and therefore has the potential to be applied to various optical devices.

Source: Laser Net

Related Recommendations
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    See translation
  • Strategy Networks Utilizes Ekinops for Optical Network Upgrade

    Strata Networks is one of the fastest growing communication cooperatives in Utah, and has chosen Ekinops360 from Ekinops as the platform to upgrade its optical transmission network.Strata is headquartered in Roosevelt, Utah, with a network spanning the Uintah Basin, the Vasatch Front, and Denver. The cooperative continues to expand and improve its fiber optic footprint to differentiate its telepho...

    2023-11-21
    See translation
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    See translation
  • The NIRPS alliance is driven by laser frequency comb technology to advance research on exoplanets

    The Near Infrared Red Planet Search Alliance, jointly managed by the Department of Astronomy at the University of Geneva and the University of Montreal, has received cutting-edge advances in CSEM laser frequency comb technology.The laser frequency comb is a precise and stable light source designed to help the NIRPS alliance unravel the mysteries of distant planets, including the possibility of sea...

    2023-12-13
    See translation
  • Meltio launches a new blue laser 3D printer M600

    Recently, metal 3D printing manufacturer Meltio launched its latest metal 3D printer - M600. This M600 has shown significant progress in integrating into industrial manufacturing processes, no longer limited to niche applications. Like most of Meltio's product lines, the design of M600 was originally intended to address common manufacturing issues such as long delivery times, high inventory cost...

    2024-07-06
    See translation