English

Laserline completes 70% equity acquisition of WBC Photonics

977
2024-09-20 17:29:21
See translation

Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline.

 



Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better than 4 mm mrad), but also establishes its position as a comprehensive service provider in the diode laser market in the blue wavelength field, covering a comprehensive product line from high-precision focusing systems to multi kilowatt high-power applications.

WBC Photonics, This enterprise, created by the management through the acquisition of TeraBiode, a subsidiary of former pine, focuses on producing high-performance diode lasers in the near-infrared (NIR) and blue wavelength ranges. The high beam quality of its laser system benefits from advanced emitter fundamental wavelength beam synthesis technology. This acquisition has opened the door for Laserline to new target markets, particularly in application areas such as additive manufacturing, welding, and cutting that heavily rely on high focusing performance.

Dr. Laserline, General Manager Christoph Ullmann commented, "The acquisition of WBC Photonics is a crucial step towards our goal of becoming a global leader in the blue light diode laser industry. It not only enhances our strength in blue light industrial semiconductor laser solutions, providing a comprehensive selection from top beam quality to global top high-power levels, but also further consolidates our market position in this field.

Michael Deutsch, CEO of WBC Photonics, also expressed a positive outlook: "Working together with Laserline, we can cross borders and jointly enter the global high brightness blue light laser market, promote innovation and development of blue semiconductor laser technology, and strive to become a global leader in this field.

Blue light semiconductor lasers, as a core technology in the electronics manufacturing industry, are becoming increasingly important, especially in the processing of non-ferrous metals such as copper and its alloys, showing great potential.

Due to the absorption efficiency of 445 nm blue light waves for copper and copper alloys being five times higher than infrared light, the energy required for thermal conductivity welding is significantly reduced, making precise welding of highly conductive non-ferrous metals such as copper and gold possible.

Since the first batch of blue semiconductor lasers were introduced, even the thinnest copper components can achieve reliable connections without relying on additional material reinforcement, opening a new chapter in material processing technology.

Source: OFweek

Related Recommendations
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    See translation
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    See translation
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    See translation
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    See translation
  • Nubis Communications to be acquired by Ciena

    Recently, in Hanover, Maryland, telecommunications company Ciena reached an agreement with Nubis Communications to acquire it for $270 million. Nubis Communications focuses on high-performance, ultra compact, and low-power optoelectronic interconnect products designed to support artificial intelligence (AI) workloads. This transaction will expand Ciena's product portfolio and enhance its ability t...

    09-29
    See translation