English

DataLase launches a new laser active transparent to white coating

934
2024-03-09 14:31:49
See translation

Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.

These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. This series includes transfer printing coatings for directly marking the shape of objects, such as bottles and bottle caps.

This multifunctional coating can also be used for folding paper boxes, flexible films, foils, small bags, and labels. High opacity, clear laser printing quality, and QR code readability can be achieved on a range of lasers, providing CO2, fiber, and UV lasers.

Compared to laser ablation, these coatings can eliminate ink debris, odors, and exhaust gases, making them suitable for sterile packaging. They also extend the lifespan of common filters and extraction equipment in printing lines. In addition, compared to laser ablation, coatings allow for faster laser imaging, thereby increasing production yield and extending laser lifespan at lower laser power.

Uniquely, these coatings provide white markings through a metal free natural alternative, with titanium dioxide commonly used in traditional and digital inks. This sustainable chemical composition and the resulting coatings are widely protected by exclusive patents held by DataLase. This comprehensive patent protection ensures a high degree of assurance in the supply chain.

Ally Grant, Chief Technology Officer of DataLase, stated, "Based on the high expectations set by our market leading paint and pigment technology, our innovative transparent to white coatings aim to reduce consumables and waste in the production environment. They not only increase production and productivity, but also have wear and friction resistance, thereby minimizing the need for potential rework and further waste.".

These coatings have a wide range of uses and are sufficient to meet product coding applications in various industries, including food and beverage, home and personal care, pharmaceuticals, and healthcare. They are compatible with a variety of substrates such as film materials, paper, and plastics, making them ideal for use in small bags, laminates, and bottles.

Source: Laser Net

Related Recommendations
  • Scientists develop flat-topped laser beams to overcome Gaussian distribution limitations

    The beam emitted by almost all laser systems follows the Angle pattern of Gaussian distribution. The Gaussian irradiance distribution means that irradiance has a smooth peak at the center point and slowly declines toward the edge. In theory, the irradiance level of a Gaussian distribution can never reach zero, which means that the distribution can expand indefinitely. This phenomenon in the laser ...

    2023-08-04
    See translation
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    See translation
  • TRUMPF helps upgrade the automation of 3D laser processing for automotive thermoforming

    (Dechengen, Germany, March 24, 2025) - TRUMPF Group in Germany has now provided end customers with a fully automated one-stop solution for laser processing systems. With this solution, customers can not only shorten the production cycle, but also effectively reduce the cost of 3D laser material processing. Our laser equipment has excellent production efficiency. Now, through the automation upgrade...

    04-02
    See translation
  • STMicroelectronics and Metalenz collaborate to promote the popularization of metasurface optical devices

    STMicroelectronics (ST), a developer of semiconductor technologies and Metalenz, which creates metasurface optics, have announced a new license agreement.The companies intend to broaden ST’s capability to use Metalenz IP to produce advanced metasurface optics based on ST’s manufacturing platform combining 300mm semiconductor and optics production, test and qualification. (Any) fiancial details of ...

    07-18
    See translation
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    See translation