English

Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

509
2023-08-11 14:28:54
See translation
It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine with a variety of deformation modes. The results were published in Nature Communications.
 
In recent years, femtosecond laser two-photon polymerization, as a true 3D processing method with nanometer precision, has been widely used to fabricate various functional microstructures. These microstructures show broad application prospects in the fields of micro-nano optics, microsensors and micromachine systems. However, how to use femtosecond laser to realize composite multi-material processing and further build micro-nano machinery with multi-mode is still a great challenge.
 
According to the researchers, the femtosecond laser two-in-one processing strategy includes the construction of hydrogel joints using asymmetric two-photon polymerization and the deposition of silver nanoparticles by laser reduction in local areas of joints. Among them, asymmetric photopolymerization technology can produce anisotropy in the cross-linking density of the local region of the hydrogel micro-joint, and finally make the bending deformation controllable in direction and Angle. In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which makes the mode switching of multi-joint micromachines exhibit excellent characteristics of ultra-short response time and ultra-low drive power. 
 
As a typical example, eight micro-joints are integrated into a humanoid micromachine. Spatial light modulation technology is then used to achieve a multi-focus beam in 3D space, which in turn precisely stimulates each micro-joint. The cooperative deformation between multiple joints enables the humanoid micromanipulator to complete multiple reconfigurable deformation modes. Finally, the "dancing microrobot" was realized at the micron scale. As a proof of concept, by designing the distribution and deformation direction of the micro-joints, the double-jointed micro-robotic arm can collect multiple micro-particles in the same and different directions.
 
According to the researchers, the femtosecond laser two-in-one machining strategy can construct deformable micro-joints in various local areas of three-dimensional microstructures, and achieve a variety of reconfigurable deformation modes. In the future, micromanipulators with multiple deformation modes will show broad application prospects in micro-cargo collection, microfluidic manipulation and cell manipulation.
 
Source: Science and Technology Daily
Related Recommendations
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    See translation
  • The INRS camera captures transient events and is suitable for various scenarios such as high-speed LiDAR systems for autonomous driving

    It is reported that the National Institutes of Sciences (INRS) of Canada has developed a camera platform that can achieve cheaper ultra fast imaging through the use of ready-made components, which can be used in various applications.This new device aims to address some of the limitations of current high-speed imaging, including parallax errors and potential damage from pulse illumination. Th...

    2023-10-07
    See translation
  • Optimizing the phase focusing of laser accelerators

    With the help of on-chip accelerator technology, researchers at Stanford University are getting closer to manufacturing a miniature electron accelerator that can have various applications in industrial, medical, and physical research.Scientists have proven that silicon dielectric laser accelerators can now be used to accelerate and limit electrons, thereby producing concentrated high-energy electr...

    2024-02-29
    See translation
  • The emergence of laser engraving glass technology injects exquisite and vivid artistic quality into glass works

    The emergence of laser inner glass carving technology has brought new forms and possibilities of artistic expression to glass art. It not only showcases advanced technology and innovative craftsmanship, but also endows glass works with unique artistry.Firstly, laser engraved glass can achieve very fine and complex carving effects. By penetrating the interior of glass with a laser beam for carving,...

    2023-09-15
    See translation
  • Fujitsu collaborates to research and develop multi band wavelength fiber optic transmission technology

    Recently, Fujitsu and KDDI research company have successfully developed a high-capacity multi band wavelength multiplexing transmission technology using installed optical fibers.The new technology of the two companies can transmit wavelengths beyond the C-band by using batch wavelength conversion and multi band amplification technology.Expanding transmission capacity in remote areasTwo companies h...

    2023-12-05
    See translation