English

Pressure sensing using dual color laser absorption spectroscopy

372
2024-03-09 13:58:51
See translation

The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.

The results of this study have been published in Optics Letters.
Aircraft engines are transitioning towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is a key parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors can disrupt combustion flow and are limited by the temperature tolerance of the sensor material.

The researchers of this study designed a non-contact pressure sensing technology for high-temperature environments and tested it at temperatures up to 1300 K. This study mainly addresses the challenge of considering the influence of molecular concentration on gas pressure measurement in such an environment.

Researchers have found that by connecting double absorption lines to widen the collision line width, concentration variables can be alleviated. This breakthrough enables researchers to achieve concentration independent pressure measurements.

To verify this discovery, considering that the main product of hydrocarbon fuel combustion systems is H2O, the team used double absorption lines of H2O near 1343 nm and 1392 nm in a precisely designed heating absorption cell. They each achieved 50 μ S and 3% time resolution and pressure measurement uncertainty.

Source: Laser Net

Related Recommendations
  • Renowned companies such as TRUMPF and Jenoptik participate in high-power laser projects in Germany

    High power laser diodes will be key components of future fusion power plants.Recently, the German Federal Ministry of Education and Research (BMBF) launched a new project called "DioHELIOS". The project will last for 3 years and is part of BMBF's "Fusion 2040" funding program, which aims to build the first nuclear fusion power plant in Germany by 2040.The project will last for three years and rece...

    2024-11-09
    See translation
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    See translation
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    See translation
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    See translation
  • A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

    Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-lo...

    2023-09-21
    See translation