English

Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

194
2024-02-23 14:30:27
See translation

Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional materials.

Cecilia Chen, a doctoral student in engineering at Columbia University and co-author of the latest paper, and colleagues from her Alexander Gaeta quantum and nonlinear photonics group used hexagonal boron nitride (hBN). HBN is a two-dimensional material similar to graphene: its atoms are arranged in a honeycomb like repeating pattern, which can be peeled off into thin layers with unique quantum properties. Chen pointed out that hBN is stable at room temperature, and its constituent elements - boron and nitrogen - are very light. This means they vibrate very quickly.

Understanding atomic vibrations
Atomic vibrations occur in all materials above absolute zero. This motion can be quantized as quasi particles called phonons, with specific resonances; In the case of hBN, the team is interested in optical phonon modes that vibrate at 41 THz, with a wavelength of 7.3 μ m. Located in the mid infrared region of the electromagnetic spectrum.

Although the mid infrared wavelength is considered short and therefore has high energy, in images of crystal vibrations, they are considered long and have low energy in most laser optical studies, with the vast majority of experiments and studies conducted in the visible to near-infrared range, approximately 400nm to 2um.

experimental result 
When they tune the laser system to match 7.3 μ When m corresponds to the hBN frequency, Chen, his doctoral student Jared Ginsberg (now a data scientist at Bank of America), and postdoctoral researcher Mehdi Jadidi (now the team leader of quantum computing company PsiQuantum) are able to simultaneously drive phonons and electrons in the hBN crystal, effectively generating new optical frequencies from the medium, which is a fundamental goal of nonlinear optics. The theoretical work led by Professor Angel Rubio from the Max Planck Institute helped the experimental team understand their results.

They used commercial desktop mid infrared lasers to explore the phonon mediated nonlinear optical process of four wave mixing, in order to generate light close to even harmonics of optical signals. They also observed that the number of third-order harmonics produced increased by more than 30 times compared to the case where phonons were not excited.

Dr. Chen said, "We are pleased to demonstrate that amplifying natural phonon motion through laser driving can enhance nonlinear optical effects and generate new frequencies.". The team plans to explore how to use light to modify hBN and similar materials in future work.

This study was funded by the US Department of Energy, the European Research Council, and the German Research Association.

Source: Sohu


Related Recommendations
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    See translation
  • Coherent launches 532 nm HyperRapid NXT picosecond laser for ultra precision manufacturing of thin film solar cells

    The leader of material processing industry lasers, Cohen Corporation, announced yesterday the launch of its new HyperRapid NXT industrial picosecond laser, with a working wavelength of 532 nm and an average power of 100 W, which can achieve ultra precision manufacturing of thin film solar cells.The second generation solar cells, which are expected to achieve a leap in energy efficiency, are mainly...

    2024-01-25
    See translation
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    See translation
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    See translation