English

Micro optical technology based on metasurfaces has become a hot topic

513
2024-02-02 18:01:29
See translation

Introduction and application of a micro optical platform using metasurfaces
Metasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR optical systems.

If metasurfaces overcome the challenges of complex manufacturing processes and high production costs and become commercially viable, South Korea may gain significant technological advantages in the field of nanooptics.

A collaborative research group led by Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering, along with doctoral students Younghuan Yang, Junhwa Seong, Minseok Choi, and Junkyeong Park (co first authors) from the Department of Mechanical Engineering at Pohang University of Science and Technology, as well as Dr. Gyoseon Jeon, Dr. Kyong il Lee, and Dr. Dong Hyun Yoon from the Institute of Industrial Science and Technology (RIST), published a paper in "Light: Science and Applications".

The title is "Integrated metasurfaces for re vision a near future disruptive optical platform", which summarizes the recent research trends of micro optical platforms based on metasurfaces. They also proposed future research directions and commercialization methods in the journal.

Throughout history, metasurface research has focused on fully manipulating the properties of light, resulting in various optical devices such as metal sensors, metal holograms, and beam diffraction devices. However, recent research has shifted their focus to integrating metasurfaces with other optical components.

The overall concept and prospects of metasurface integration
The research team proposed the research and application of integrated metasurfaces in the paper. These integrated metasurfaces are optical components that can be combined with various standard optical components, such as light-emitting diodes (LEDs) and liquid crystal displays (LCDs). In order to achieve commercialization of metasurfaces, the research team suggests that future research in this field should focus on how to integrate metasurfaces into commonly used devices, making them suitable for daily life.

In addition, the research team emphasized the importance of cooperation between industry and academia, and emphasized the impact of metasurface research on the future optical device industry and national competitiveness. They emphasized that support and cooperation at the national level are crucial for the development of innovative optical platforms.

Professor Junsuk Rho explained, "Integrated metasurfaces are a supplement to existing electronic technologies and represent another innovative solution for various applications. I hope to have sustained efforts, research, and national support to produce more innovative results."

Source: Sohu

Related Recommendations
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    See translation
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    See translation
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    See translation
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    See translation
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    See translation