English

In situ bubble point measurement using spectroscopy

1100
2024-01-31 14:27:22
See translation

Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.

Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory sample analysis, but some fluid characteristics can also be measured in situ using formation testers. A new downhole bubble point technology has been developed to supplement traditional well analysis measurements. Measure the initial pressure of bubbles on reservoir fluids for early estimation and sample representativeness.

The method outlined consists of two parts: bubble generation and bubble point pressure detection. After separating a certain volume of uncontaminated fluid in the fluid analyzer module of the formation tester, use a downhole pump to reduce the streamline pressure at a low and accurate flow rate. Use spectral measurements at a data sampling rate of 128 ms to detect bubble initiation. Even very small bubbles can scatter visible and near-infrared light passing through the pipeline, ensuring the detection of bubble formation. The streamline pressure reduction experiment can be conducted within a few minutes, at any time, on a series of well bodies.

Underground bubble point pressure measurements were conducted on four different fluids. The gas/oil ratio range for testing fluids is 90 m3/m3 to 250 m3/m3. In each case, the downhole bubble points obtained from the streamline decompression experiment match the saturation determined by constant component expansion in the laboratory, reaching within 350 kPa. Firstly, use near-infrared spectroscopy to detect the initiation of bubbles. As the pressure decreases, the size of bubbles coming out of the solution will increase, and the presence of bubbles can be recognized by other downhole sensors, such as live density and fluorescence, manifested as signal scattering. For each fluid studied, the pressure and density measurements obtained when the streamline pressure is higher than the saturation pressure are also used to calculate the compressibility of pressure changes with pressure.

This type of downhole bubble point pressure measurement can optimize real-time sampling operations, achieve fluid classification and separation research, and can be used for early elucidation of fluid state equation models. This technology is suitable for black oil and volatile oil. For heavy oil with very low gas content, the accuracy of this technology may be reduced due to the energy required to overcome nucleation barriers.

Previously recorded techniques typically infer downhole bubble points by analyzing the rate of change in streamline pressure. For the first time, it demonstrated the beginning of directly detecting the appearance of bubbles without the need for additional specialized downhole equipment, and was validated based on laboratory measurement results. The measurement accuracy was achieved by combining a 128 millisecond spectrum with a low and accurate decompression rate.

Source: Laser Net

Related Recommendations
  • Based on Transform Optics: Realizing an Ideal Omnidirectional Invisible Cloak in Free Space

    A team led by Professor Ye Dexin and Professor Chen Hongsheng from Zhejiang University, as well as Professor Yu Luo from Nanyang University of Technology, conducted practical research on full parameter transformation optical devices. The research team has designed and implemented an all parameter omnidirectional invisibility cloak based on the theory of linear transformation optics and omnidirecti...

    2024-04-29
    See translation
  • XLight raises $40 million in financing to develop new EUV light sources

    xLight, a US startup aiming to commercialize particle accelerator driven free electron lasers (FELs) for use in semiconductor production, says it has raised $40 million in a series B round of venture funding.The Palo Alto, California, firm said that the support would enable it to develop a prototype next-generation light source capable of emitting at extreme ultraviolet (EUV) wavelengths that are ...

    07-23
    See translation
  • Scientists are using lasers to create lunar paving blocks

    Original Hal Bowman 9000 Scientific RazorThe 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAMBy using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these exp...

    2023-10-14
    See translation
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    See translation
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    See translation