English

Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

524
2024-12-23 14:31:11
See translation

Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process stability, and productivity, while minimizing material waste to the greatest extent possible. This new beam shaping method will help additive manufacturing become more flexible and efficient.

Numerous studies have confirmed that beam shaping in PBF-LB can improve the efficiency and productivity of this additive manufacturing process. The new testing system developed by Fraunhofer ILT enables flexible research on complex laser beam profiles with power levels up to 2kW. This innovation can be used to customize solutions for industrial partners, aiming to more efficiently and robustly integrate PBF-LB process into industrial production to meet their growing needs.

1. The drawbacks of Gaussian distribution
Currently, in many PBF-LB processes, the laser power is typically between 300 and 400 watts. However, the standard Gaussian laser beam used has significant drawbacks: the power at the center of the beam is highly concentrated, which can cause local overheating, poor material evaporation, and process instability, both of which may damage component quality due to splashing and porosity. These issues severely limit the scalability of the process, which means that the available laser power of up to 1 kW in PBF-LB systems cannot be used for most materials.

Marvin Kippels, a doctoral student in the Fraunhofer ILT Laser Powder Bed Melting Department, said, "One way to accelerate this process is to use multiple lasers and optical systems simultaneously. However, the cost is at least proportional to the number of systems installed. In addition, these systems are not always evenly utilized in practical applications, which results in productivity not increasing proportionally with power. Therefore, improving the productivity of single beam processes is a promising method that can also be applied to multi beam systems.

2. Exploring new possibilities through beam shaping
Previous studies have shown that even simple beam shapes such as rectangles, rings, or combinations of two Gaussian distributions can produce satisfactory results in terms of component quality and processing speed. Due to the lack of necessary system technology, the potential of more complex beam shapes has not yet been fully explored. As researchers at Fraunhofer ILT begin conducting comprehensive research, this situation is changing.

Kippels explained, "Due to the highly dynamic nature of the interaction between laser beams and materials during this process, simulations can only serve as indicators of actual melt pool behavior." He is currently building a new system using LCoS-SLM (silicon-based liquid crystal spatial light modulator), which will enable researchers to study almost any beam profile during PBF-LB processes.

Due to its laser power of up to 2kW, this innovative system has become a platform for testing new beam shapes at extremely high power levels in PBF-LB processes, enabling the determination of suitable system technologies for individual PBF-LB tasks. Kippels explained, "We are able to optimize the PBF-LB process in a targeted manner." He specifically mentioned that by adjusting the geometry of the melt, material evaporation can be reduced, splash formation can be minimized, melt pool dynamics can be reduced, the melt surface can be made smoother, and process efficiency can be improved.

3. Flexible beam profiles that meet specific needs
Currently, system technology is often claimed to generate specific beam shapes, such as circular or hat shaped contours. However, the selection of these beam shapes is not based on a deep understanding of the underlying process mechanisms, as reflected in the conflicting literature on this topic. Only by fundamentally understanding the process can research clearly determine which adjustments can achieve established goals, such as specific melt track geometries.

This means that it is necessary to develop and optimize the beam shape for the application before it can be ideally implemented within the company without the need for LCoS SLM technology. With this research platform, Fraunhofer ILT's industrial customers and project partners can benefit from unprecedented flexibility in researching laser beam tools.

Marvin Kippels said, "Although we are still in the early stages, we have seen the enormous potential of beam shaping for PBF-LB processes. Each application has its own requirements, so there is no perfect beam shape. Thanks to our flexible beam shaping, we are able to find the ideal distribution for each process and the optimal process parameters for related tasks.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    See translation
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    See translation
  • Creativity Falcon 2 laser cutting machine will be launched in Germany equipped with a new 60W laser head

    Starting from June 20th, The Creativity Falcon 2 laser cutting machine will also be launched in Germany, equipped with a new 60W laser head. With this ability, fully encapsulated equipment can now also be carved into steel. High power is achieved through twelve 5-watt laser diodes, whose beams are combined with each other. This will make it possible to cut 22mm thick lime wood and 30mm thick or...

    2024-05-29
    See translation
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    See translation
  • Farnell provides its own branded 3D printing consumables

    Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists."."With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's pr...

    2024-06-03
    See translation