English

Fraunhofer ISE develops a faster laser system for wafer processing

551
2023-12-23 14:00:27
See translation

By using a new type of laser, the processing speed of wafers can be 10 to 20 times faster than before. This is the result of a research project at the Fraunhofer Institute for Solar Systems in Germany.

Researchers have developed a prototype that can use ultraviolet waves to carve the most intricate structures on silicon wafers. The new system concept enables solar cell manufacturers to perform laser processing at the highest speed without compromising on the size of the structure or processing field.

In order to produce photovoltaic cells from wafers, wafers must be metallized. In this step, the fine channels are grooved at the top of the cell. Silver paste enters the channel and is then used as a conductor track. The speed at which the channel enters the silicon wafer is crucial for battery production to further reduce production costs.

The laser provided by Fraunhofer ISE can draw 1800 lines per second. This is 10 to 20 times faster than so-called galvanometer scanners, which are typically used for this purpose. The laser has a high repetition rate of 10 megahertz and a maximum pulse energy of 5.6 microjoules.

This laser can also process M12 format wafers with a side length of 210 millimeters. The laser engraving channel is only 15 microns wide. This is 30% finer than the currently commercially used ultraviolet laser. Compared to the very common infrared laser, the channel of the new laser is three times larger. A finer channel can reduce the use of silver paste, thereby helping to further reduce production costs.

"The unique feature of the demonstrator design is that large workpieces can be processed very quickly and the structural dimensions are small," said Jale Schneider, project manager at Fraunhofer ISE. The idea that you can only have two of these three characteristics at the same time - large image field, rapid processing, and fine structure - is deeply rooted in the laser material processing industry. With this system, we have achieved these three aspirations simultaneously.

German laser expert Edgewave GmbH has developed a prototype. Moewe Optical Solutions built a polygon scanner for this project. At Fraunhofer ISE, the team combined a polygonal scanner, laser, and axis for beam guidance into a system. The group now hopes to research new processes to increase production.

Source: Laser Net

Related Recommendations
  • HP100A-50KW-GD laser power detector for measuring extremely high power laser beams

    The HP100A-50KW-GD laser power detector is mainly designed for manufacturers of high-power lasers and laser systems, factories that use high-power lasers to cut thick metal parts, and military applications.The HP100A-50KW-GD adopts a gold reflector cone and a reduced back reflection geometry, which can capture 97% of incident light and process up to 50 kW of continuous laser power. The back reflec...

    2024-01-16
    See translation
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    See translation
  • The visual LiDAR fusion calibration board improves the detection accuracy of the vehicle navigation system and does not need to be adjusted before sailing

    At present, the navigation system has become an important equipment on ships, aircraft, missiles, automobiles and other navigational vehicles. Laser Doppler radar has become an important development direction in the field of velocity measurement technology because of its high accuracy, good spatial resolution and fast dynamic response. The application of the three-beam Doppler Lidar in the...

    2023-08-23
    See translation
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    See translation
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    See translation