English

Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

364
2023-08-21 10:55:33
See translation

Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.

Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manufacturer ACSL Ltd. This startup company raised $25 million earlier and plans to collaborate with a subsidiary of Toshiba to build a small experimental reactor in Japan in 2024. Professor Nakamura of the University of California, Santa Barbara said: Japan excels in manufacturing, while the United States excels in business and marketing. They hope to combine the advantages of both countries to build nuclear fusion reactors.

Currently, the Blue Laser Fusion program is commercializing nuclear fusion reactors, which can generate 1 gigawatt of electricity, equivalent to the output power of a regular nuclear power reactor. The construction cost is approximately $3 billion. Nuclear fusion technology aims to replicate the processes that occur on the sun, generating a large amount of energy in a controlled manner. Unlike nuclear fission, fusion does not produce radioactive waste, making it a promising energy source not only for Earth but also for space missions.

In order to initiate fusion ignition, researchers had to heat the fuel to over one million degrees Celsius, and they used various methods to accomplish this feat. However, the main challenge lies in maintaining the reaction and generating more energy than is consumed during the fusion process. In seeking to maintain fusion reactions, nuclear scientists use two main methods. The first involves magnetic confinement, in which a powerful magnet is used to maintain the fuel in the plasma state within a torus or donut shape. This method led to the creation of the Tokamak reactor and sparked great interest and investment from companies and venture capitalists; The second method is to use a laser and emit it rapidly and continuously. However, the disadvantage of this method is that large equipment cannot emit laser in continuous mode, while small equipment cannot generate sufficiently high output to ignite fusion fuel.

This is where blue laser fusion believes it can bring about change.

Nakamura was awarded the Nobel Prize for his groundbreaking work in developing blue light-emitting diodes. He believes that his company can utilize his semiconductor expertise to create a safe path for achieving nuclear fusion and transforming it into commercially viable technology. Due to the fact that Blue Laser Fusion Company is currently applying for a patent, the specific details of this method have not yet been disclosed. However, Nakamura is confident in the feasibility of building a fast shooting laser and envisions building a one megawatt nuclear reactor in Japan or the United States by the end of this century. Before reaching this milestone, the company plans to build a small experimental factory in Japan by the end of next year.

In the months since its establishment, Blue Laser Fusion has submitted more than ten patent applications in the United States and other countries. The company is still researching using boron instead of deuterium as fuel for fusion reactors. The company claims that boron as a fuel does not produce harmful neutrons, making it a more favorable choice. Blue Laser Fusion also collaborates with other Japanese companies, such as Toshiba Energy Systems and Solutions, a manufacturer of nuclear power plant turbine mechanisms, and Tokyo YUKI Holdings, which provides metal processing services. In December 2022, the Lawrence Livermore National Laboratory in the United States successfully demonstrated the use of lasers to generate more energy from nuclear fusion processes. Nevertheless, this achievement is only temporary, and to make blue laser nuclear fusion commercially viable, they must demonstrate long-term sustainability.

Source: OFweek


Related Recommendations
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    See translation
  • Huagong Technology and Far East Control signed a strategic cooperation agreement to collaborate on the application and digital transformation and upgrading of "laser+intelligent manufacturing"

    On October 16th, Huagong Technology signed a strategic cooperation agreement with Far East Holdings Group Co., Ltd. The two industry leaders will engage in deep cooperation in multiple fields to promote the development and innovation of their businesses. Both parties will work together to enhance the application of "laser+intelligent manufacturing" and the level of digital transformation and upgra...

    2023-10-18
    See translation
  • Femtosecond laser-induced plasticity of copper oxide nanowires

    It is reported that researchers from the University of Waterloo in Canada have reported a study on the plasticity of copper oxide nanowires induced by femtosecond laser. The related research was published in Applied Surface Science under the title "Femtosecond laser induced plasticity in CuO nanowires".Metal oxide nanowires are ideal materials for manufacturing nanodevices, especially strain senso...

    2024-07-15
    See translation
  • Van's updates the manufacturer of laser-cut parts

    Van's Aircraft has responded to reports of ruptured dented parts found in AirVenture's latest kit. These defects are caused by external suppliers changing the process of laser cutting parts. From February 2022 to June 2023, Van's moved some parts from traditional punch manufacturing to an outside supplier that can laser cut rivet holes. The move is designed to increase the company's throughput and...

    2023-08-04
    See translation
  • Laser Wire Solutions and HumanTek Jointly Enter the Korean Laser Wire Stripping Market

    Recently, Laser Wire Solutions officially welcomed its important distribution partner in South Korea - HumanTek. This cooperation marks the official establishment of HumanTek as a branch of Laser Wire Solutions in Korea, and both parties will work together to provide excellent services for the Korean laser wire stripping market.HumanTek, with its deep foundation in the Korean market and strong pro...

    2024-07-03
    See translation